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LEGI: Geophysical and Industrial Flows Lab  
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Human Ressources  ≈ 110 people

Permanent staff ~ 40 people
PhD & Postdocs ~ 50 people

CORIOLIS platform 

The largest rotating hydraulic basin in the world 

D = 13m ; m=350T

2 m
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Soulac-sur-mer, France (source: twitter, L. Theillet Sud-Ouest)

Sand Engine - The Netherland
20 Mm3 of sand 

50 M€

Observation after 1 year Prediction after 1 year

Luijendijk et al. CE (2017)

Motivations
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Motivations
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At the European scale
1. 20% of European coasts are in erosion - 15 km2 / year
2. Sandy beaches are mostly in erosion
3. Coastal marshes are mostly in accretion
Majority of European coasts are at moderate to high risk of erosion

The focus of this lecture is on sandy beaches

Le climat de la France au XXIè siècle - Volume 3 - Evolution du niveau de la mer - février 2012



Philosophy of this lecture

In coastal morphydynamics there are mainly 2 approaches:


๏ Reductionism: Process-based modeling 

๏ Universality: Reduced-complexity modeling 

In what follows, I present you my personal vision of coastal erosion which rely on process-based modeling 

and not reduced-complexity modeling

« Reductionism is the modeling methodology whereby the development and behavior of large 
(pattern)-scale features are reduced entirely to their underlying fundamental processes. »

Werner (2015) 

« Universality is the modeling methodology whereby the overall characteristics of behaviors and 
patterns are modeled with the simplest system within a class of systems sharing these same 
behaviors and characteristics, despite being composed of very different building blocks »

Werner (2015) 
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Multi-phase flow models

Conventional Models

Morphodynamics: a multi-scale problem
Turbidity currents

Beach evolution

Ripples & dunes

Waves

Boundary layer

Sand grain
Fluid Turbulence

Upscaling

Scour

1 km

1 mm

1 ms 1 hour 1 week

1 m
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Outline

1. Coastal modeling at « large scale » 

2. Sediment transport modeling at the grain scale : turbulent and granular processes 

3. Upscaling of fine-scale processes at intermediate scales
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Wave energy spectrum in the ocean

Bosboom & Stive (2020)11
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Stokes wave model

More advanced lecture by G. Richard tomorrow

For a perfect irrotational fluid flow, a velocity potential 𝜙 exists such that

and the Navier-Stokes equations reduces to:

Asymptotic expansion in wave steepness: :

      

      

⃗u = ⃗∇ ϕ

Δϕ(x, z, t) = 0, ∀(x, z) ∈ ℝ2, ∀t ∈ ℝ+

∂ϕ
∂t

+
(∇ϕ)2

2
+

p
ρ

+ gz = C(t)

ϵ =
H
L

ϕ(x, z, t) = ϕ0 + ϵ ϕ1(x, z, t) + ϵ2 ϕ2(x, z, t) + ϵ3 ϕ3(x, z, t) + . . .

η(x, t) = η0 + ϵ η1(x, t) + ϵ2 η2(x, t) + ϵ3 η3(x, t) + . . .

Sir G. Stokes (1819-1903)

Stokes (1847) 12



First order solution:

‣ Potential:  

‣ Free surface:  

‣ Dispersion relation:  

ϕ(x, z, t) =
a g
ω

cosh(k(z + h))
cosh(kh)

cos(kx − ωt)

η1 = a sin(kx − ωt)

ω2 = g k tanh(kh)

Stokes (1847)

Stokes wave model: linear theory

Closed trajectories of « fluid particles » implies no mass flux (first order model)
13

Also known as Airy wave theory

Shallow water                                 Deep water



Stokes (1847)

Linear theory valid for

‣ Small steepness: 

‣ Large relative depth: 

Limit of the linear theory is given by the Ursell number:

ϵ =
H
L

< < 1

h
L

> > 1

Ur =
H
L ( L

h )
3

∝
ϕ2

ϕ1
< < 1

Stokes wave model: limits of the linear theory
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Not very relevant for beach morphodynamics 
but still very useful



Stokes (1847)

- Non-linear waves are velocity skewed: peak crest velocity is larger than trough velocity
- Mean water level is not zero 
- Non-closed trajectories of « fluid particles » implies mass flux toward the coast = Stokes drift

2nd order velocity potential:

ϕ2(x, z, t) = −
3
8

a2 ω
sinh4(kh)

cosh(2 k(z + h))
cosh(kh)

cos[2 (kx − ωt)] + . . .

η2(x, z, t) =
a2 k

4
(cotanh3(kh) − cotanh(kh)) cos[2 (kx − ωt)] + . . .

Stokes wave model: non-linear effects
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Stokes wave model: Wave energy

Total wave energy: 

‣ Potential energy contained in one wavelength: associated with wave motion

‣ Kinetic energy contained in one wavelength: 

‣ Equipartition between potential and kinetic energy: 

Total energy : 

‣ Wave power:  with group celerity: 

Ew = EP + EC

EP =
1
L ∫

L

0 ∫
η

0
ρg zdz dx =

1
L ∫

L

0

1
2

ρg η2dx =
1
L ∫

L

0

1
2

ρg a2 sin2(kx)dx =
1
4

ρ g a2

EC =
1
L ∫

L

0 ∫
η

−h

1
2

ρ (u2 + w2) dz dx =
1
L ∫

L

0 ∫
0

−h

1
2

ρ (u2 + w2) dz dx + o(ϵ) =
1
4

ρ g a2

EC = EP

Ew =
1
2

ρ g a2 =
1
8

ρ g H2

P = Ew Cg Cg =
C
2 (1 +

2kh
sinh(2kh) )

16

H = 2aWave height:



Superposition of 2 linear solutions: bi-chromatic waves

‣ 2 wave frequency:  ( )
 
‣ If  such that 
    Then smallest value of  = wave group frequency

ω1 and ω2 ω1 ≈ ω2

∃(n; m) ∈ ℕ2 ωg = nω1 = mω2
ωg

Stokes wave model: wave groups

‣ Free surface elevation:  

with 

ηT = A1 (sin(k1x − ω1t) + sin(k2x − ω2t))
ηT = A1 2 sin ( (k1 + k2)x − (ω1 + ω2)t

2 ) cos ( (k1 − k2)x − (ω1 − ω2)t
2 )

ω1 − ω2 < < ω1 + ω2
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Stokes wave model: wave groups

https://www.surfline.com/surf-news/city-surf-changing-lives-san-francisco/41874

Credits: Nate Lawrence
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Irregular waves modeling

Bosboom & Stive (2020)

Wave spectrum depends on frequency & direction

JONSWAP (Hasselman et al., 1973) : North Sea 

E( f ) =
α g2

(2π)4 f 5
e

−1.25
fm
f

4

γexp(−( f−fm)2/2 (σ fm)2)

Ew = ρg∫
∞

0 ∫
π

−π
E( f, θ) dθ dfWave Spectrum: 

2 peaks in the spectrum 
one for the swell and one 
for the wind-sea

Hs ≈ 4
Ew

ρg
Significant wave height:
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Irregular waves modeling

Transport equation for wave action spectral density:

∂N
∂t

+
∂cgxN

∂x
+

∂cgyN

∂y
+

∂cθN
∂θ

+
∂cωN
∂ωr

=
Sin + Sd + Snl

ωr

N (ωr, θ) =
E (ωr, θ)

ωr
with ωr = 2π f

Sin : wind

Sd : wave breaking and bottom friction
Snl : non-linear wave interactions

20

Data predicted by Fleet Numerical Meteorology and Oceanography Center (FNMOC) for now 

Large number of DoF per node: 


Community models: WW3 (USA), SWAN (Dutch), TOMAWAC (French)

Nθ × Nω

Wind at 10 m above sea surface Significant wave height Hs



Irregular waves nearshore

Bosboom & Stive (2020)

: Wave action density

 : Wave group celerity

A (θ) = ∫ N (ω, θ) dω

Cg

Integrated wave energy over frequency and directions

Dw =
3 π
16

ρg
B3

b

γ4h5
fpH7

rms

Thornton and Guza (1986)

Df =
1

2 π
ρ fw |uorb |3

 = friction factor and  = orbital wave velocityfw uorb

∂A
∂t

+
∂cgxA

∂x
+

∂cgyA

∂y
+

∂cθA
∂θ

= −
Dw + Df

ωr

: wave breaking parameterγb =
Hrms

h
≈ 0.3 − 0.8

 : Wave dissipation due to bottom friction

 : Wave dissipation due to breaking

Df

Dw

21



Irregular waves nearshore

Bosboom & Stive (2020)

γ =
Hb

hb
≈ 0.4 − 0.8

Shoaling zone

∂CgA

∂x
= −

Dw + Df

ωr
Steady-state:

22

cgxE

ωr
≈ cst ⇒ E ↑ ⇔ H ↑

Cg ≈ C = gh

Roller
Propagation

∂C Er

∂x
= Dw − DrRoller energy equation:



Wave induced mass flux: Stokes drift

Bosboom & Stive (2020)

Undertow
 =

Return current that compensate the onshore mass flux due to 
breaking waves

Cross shore currents

23

Ardhuin (2006)

From Stokes 2nd order theory:

The mass flux is 

‣ Proportional to energy flux

‣ Preferentially located near the surface

‣ Oriented toward the beach (wave propagation direction)

‣ May be on the order of 0.5 m/s
Stokes drift 

Mass conservation implies a return current: undertow

‣ Located near the bottom

‣ Oriented offshore

M = ρ∫
η

−h
u(x, z)dz = E

Cg

C



Wave effects on currents

Bosboom & Stive (2020)

Radiation stress
= 

depth-integrated and wave-averaged flux of momentum due to waves 

(Longuet-Higgins and Stewart, 1964)

‣ Raises the mean water level in the surf zone (set-up);
‣ Drives a longshore current (oblique waves).

24

Sxx = ρgE (
Cg

C
+

1
2

2kh
sinh(2kh) )

Wave set-up

longshore 
currents



Coastal flooding in the context of climate change 

Yates-Michelin et al. (2011)
Atmospheric contributions

‣ Pressure: 
‣ Winds: dynamical effects

Wave contributions
‣ Wave set-up
‣ Swash

ΔPatm = 10 hPa ↔ Δh = 0.1 m
Possible non-linear interactions between sea level rise, wave 

propagation and coastal bathymetric evolution but these 
processes have not been addressed so far…

Open question ?

25
Le climat de la France au XXIè siècle - Volume 3 - Evolution du niveau de la mer - février 2012

Tidal surge



Links with sediment transport and morphodynamics

Van Der Zanden (2019)

PhD F.X. Chassagneux (2010) PhD F. Grasso (2009) PhD F. Grasso (2009)26



Sediment transport regimes

Bed-load 

θ ≈ θc

Sheet-Flow 

θ > 0.3

Suspended-load 

S <1

Shields number:                               Suspension number:   θ =
ρ fu2

*

Δρgdp
S =

Ws

u*

Dimensionless numbers

27



Sediment transport modeling

Pros 
• Simple

• Applicable at large-scale


Cons 
• Empirical formulas 

‣ Especially bed-load

‣ Large scatter (~100%)

‣ Missing physics


• Arbitrary separation between 
bed-load and suspended-load

Pros 
• Resolve continuously sediment 

transport profile

• Incorporate fine-scale processes:

‣ Turbulence

‣ Turbulence-particle interactions

‣ Particle-particle interactions


• No arbitrary separation


Cons 
• Very expensive

• Limited to ‘small scale’ 

applications

Jenkins and Hanes JFM (1998)

Hydrodynamic model for currents: U, V, W, h


Spectral wave model: A(𝜃), UStokes, VStokes


Sediment transport model: C, qb, zb

28

C

qb

zb



Bed-load transport

Bed-load formula:  

Current:  

Waves:     

               sinusoidal waves = no sand-flux 

Waves + current:  

complex problem - no simple solution


⃗Φ =
⃗qb

(s − 1)gd3
50

⃗Φc = max [K(θc − θcr)n; 0]
⃗τc

τc

⃗Φw =
1
T ∫

T

0
max [K(θw(t) − θcr)n; 0]

⃗τw

|τw |
dt

⃗Φw ≈ max [K(θ̃w − θcr)n; 0]
⃗τw

|τw |

29Bosboom & Stive (2020)



Bed-load transport

Bed-load formula for wave and currents 

 

Dirty kitchen of coastal engineering 

 with  = transport in direction of current and  = transport perpendicular to the current


                 with  and 


                


                : wave asymmetry factor


Empirical formula providing (very) limited success to predict sandbar migration

⃗Φ =
qb

(s − 1)gd3
50

= max [12θ1/2(θsf − θc); 0]
⃗τsf

τsf

⃗Φ = (Φ||; Φ⊥)
T

Φ|| Φ⊥

Φ|| = max [Φ||1; Φ||2] Φ||1 = 12θ1/2
m (θm − θc) Φ||2 = 12 ((0.9534 + 0.1907 cos(2ϕw))θ1/2

w θm + 0.229γw cos(ϕw)θ3/2
w )

Φ⊥ = 12
0.1907θ2

w

θ3/2
x + 3/2θ3/2

m
(θm sin(2ϕ) + 1.2γwθw sin(ϕw))

γw

(Soulsby and Damgaard, 2005)

Φ||

Φ⊥

30



Bed-load transport
Half-wave cycle concept (Dibajnia and Watanabe, 1992) 

‣ Asymmetric transport by non-linear waves 


‣ Effect of phase lag between mobilization and transport 


   Dohmen-janssen et al. (2002)  

Sediment load 

‣ On-going wave-cycle: 


‣ Previous wave-cycle:  phase-lag/unsteady contributions


Velocity scale: Based on friction velocity:  


Direction: Aligned with the shear stress direction:   

where i stands for crest or trough 

Ωi = max (11 ( θi − θcr)
1.2

,0)
Ωtc/ct

θi

⃗θi

θi

⃗Φ =
1
T

θc Tc (Ωcc +
Tc

2Tcu
Ωtc)

⃗θc

θc

+ θt Tt (Ωtt +
Tt

2Ttu
Ωct)

⃗θt

θt

                       Van Der A et al. (2013)
Camenen and Larson (2007)
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Suspended-load and bed evolution

Adv.-Diff equation for C:  


                                           Settling velocity : 


Bed morphological evolution:        


                                                                 = Hyperbolic equation


                                           Erosion flux : 


                                           Morphological factor :   (may be up to 100)


Morphological time scales >> Hydrodynamic time scales


=> Speed-up morphodynamics effects


        Useful in practice but questionable from a mathematical perspective…


∂C
∂t

+ ⃗∇ ⋅ ( ⃗UC) −
∂WcC

∂z
= ⃗∇h(KC

h
⃗∇ C) +

∂
∂z (KC

z
∂C
∂z )

Wc

∂zb

∂t
+

fmor

1 − p
⃗∇h ⋅ ⃗qb =

1
1 − p

(E − D)

E = E0 max(τsf /τce − 1; 0)

fmor D E

32

C

qb

zb



Summary of nearshore model equations 




 … same for v+w











∂ζ
∂t

+
∂hu
∂x

+
∂hv
∂y

+
∂w*
∂σ

= 0

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+
w*
h

∂u
∂σ

= fv −
1
ρ0

∂P
∂x

+ Fx + Mx +
1
h2

∂
∂σ (νV

∂u
∂σ )

∂A
∂t

+
∂CgxA

∂x
+

∂CgyA

∂y
+

∂CgθA

∂θ
= −

Dw + Df

ω

∂Sr

∂t
+

∂cxSr

∂x
+

∂cySr

∂y
+

∂cθSr

∂θ
= Dw − Dr

∂C
∂t

+ ⃗∇ ⋅ ( ⃗UC) −
∂WcC

∂z
= ⃗∇h(KC

h
⃗∇ C) +

∂
∂z (KC

z
∂C
∂z )

∂zb

∂t
+

fmor

1 − p
⃗∇h ⋅ ⃗qb = E − D

H
YD

R
O

W
AV

ES
SE

D
IM

EN
T

8 non-linearly coupled PDEs 33

Wave action

Roller energy



Numerical simulation of sandbar migration
‣  CROCO with spectral wave model 

‣  Bedload: van Der A et al. (2013) 

‣  Domaine size : 200 m cross-shore 

‣  Grid resolution : 1.5 m ; time step: 0.1s

‣  Measurements:


- Wave height

- Current profiles

- Sediment concentration profiles

- Bathymetry


‣ 2 Wave conditions

Roelvink and Reniers (1995) 

Hs 
(m)

Tp 
(s)

Duration 
(h)

LIP1B 1.4 5 18

LIP1C 0.6 8 13

Onshore migration

Offshore migration
LIP1B

Energetic waves

LIP1C

Smaller waves

34



Hydrodynamic calibration

Friction coefficient, breaking parameter and roller coefficients are tuned (same parameters for both configurations)

Hs = 1.4 m - Tp = 5 s Hs = 0.6 m - Tp = 8 s

35Shafiei et al. (submitted to ocean modeling) 



Morphodynamic simulations

Onshore/offshore sandbar migration reproduced for varying wave conditions

Hs = 1.4 m - Tp = 5 s Hs = 0.6 m - Tp = 8 s

36Shafiei et al. (submitted to ocean modeling) 



Morphodynamic simulations

Shafiei et al. (submitted to ocean modeling) 

Offshore sandbar migration is due to suspended load 
undertow driven sand transport

Hs = 1.4 m - Tp = 5 s

Onshore sandbar migration is due to wave skewness 
effect on sand transport

Hs = 0.6 m - Tp = 8 s

37



1st open question

Open question: What are the stability conditions for the coupled system of equations ? 

‣ Coupling between the spectral wave and the 
hydrodynamics models

‣ Coupling between morphodynamics and wave-current 
model 

‣ Stability associated with morphological acceleration?

This is just an example but we have observed instabilities 
in other situations

38



Numerical simulation of the Truc vert ECORS 2008 field campaign
‣ Simulation period: February to April 2008 - 4 Storms

‣ CROCO with spectral wave model 

‣ Bedload: Soulsby & Daamgard (2005) 

‣ Domaine size: 2 km longshore / 1.5 km cross-shore 

‣ Grid resolution: 10-20 m ; Time step: 0.5-1 s

Senechal et al. (2011) 39



Measured bathymetries Truc vert ECORS 2008 field campaign

Senechal et al. (2011) 

February 11th 2008 April 4th 2008

40



Morphodynamic simulations: bar positions & quantification

Brier Skill Score : 

with :

• Zp predicted bathymetry

• Zm measured bathymetry

• Zi initial bathymetry


BSS = 1 −
Var(Zp) − Var(Zm)
Var(Zm) − Var(Zi)

February 11th 2008

April 4th 2008

February 11th 2008

April 4th 2008
Outerbar crestInnerbar crest

Outerbar trough

Mean profile - Fit =>

41



Vidéos

CROCO

Measured in-situ
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Best BSS with CROCO

BSS = 0.11 

Poor predictions of morphodynamics 


‣ Improvement of wave and current modeling


‣ Improvement of sand transport modeling

April 4th 2008   Measured

April 4th 2008   Predicted

43



Conclusion on  coastal modeling at « large scale »
‣Summary

- Coupled hydrodynamic-spectral wave-sediment transport equations models allows to simulate nearshore 
morphodynamics at time-scales of storm events

- Predictability of nearshore morphodynamics is still poor and highly sensitive to empirical coefficients of the model

- Main sources of errors:

‣ Wave-current interactions

‣ Wave propagation in shallow coastal zones (H ~ L/2)

‣ Sediment transport modeling

‣Perspectives

- Use wave-resolving models for beach morphodynamics 
P. Marchesiello LEGOS is developing the non-hydrostatic version of CROCO

PhD of Hung funded by IMPT at LAMA/LEGI, co-supervised by M. Kazakhova

- Improve sand transport formula (Camenen and Larson, 2007 ; van Der A et al., 2013)

Active research field in coastal engineering

Use multi-phase flow approaches to infer the fine-scale processes and improve parametrizations (collab. with T. Hsu UD) 

Open question: What are the stability conditions of nearshore numerical models when 𝛥x and 𝛥t tends to zero ?
What is the role of sandy beaches morphodynamical evolution on coastal flooding risks ?

44



Perspectives

Wave-resolving models coupled with sediment transport

‣ CROCO model - P. Marchesiello (LEGOS, Toulouse)

- 3D non-hydrostatic model 

- suspended-load and bed evolution 

‣ Less modeling hypothesis but limited to shorter time-scales

45
U (m/s)

Marchesiello et al. (submitted to ocean modeling) 



Outline

1. Coastal modeling at « large scale » 

2. Sediment transport modeling at the grain scale : turbulent and granular processes 

3. Upscaling of fine-scale processes at intermediate scales
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Motivations

Pros 
• Simple

• Applicable at large-scale


Cons 
• Empirical formulas 

‣ Especially bed-load

‣ Large scatter (~100%)

‣ Missing physics


• Arbitrary separation between 
bed-load and suspended-load

Pros 
• Resolve continuously sediment 

transport profile

• Incorporate fine-scale processes:

‣ Turbulence

‣ Turbulence-particle interactions

‣ Particle-particle interactions


• No arbitrary separation


Cons 
• Complexity of the processes to be 

modeled

• Very expensive

• Limited to ‘small scale’ applications

Jenkins and Hanes JFM (1998)47



       Shields number:                        > 0.3


Suspension number:    

θ =
ρ fu2

*

Δρgdp

S =
Ws

u*

Dimensionless numbers
    Stokes number:                 

Reynolds number:                        

St =
tp
tf

Re =
UH
νf

The role of granular interactions & fluid turbulence
Aussillous et al. JFM 2013 Revil-Baudard et al. JFM 2015

dp = 2 mm ;
ρp

ρ f
= 1.19

Re ≈ 1 ; θ ≈ 0.5 ; S ≈ ∞

dp = 3 mm ;
ρp

ρ f
= 1.19

Re ≈ 105 ; θ ≈ 0.5 ; S ≈ 1

48



Granular interactions

GDR Midi (2004), Forterre and Pouliquen (2008)

Gaseous regime  <—>  kinetic theory of granular flows

- Dilute and rapid flow

- Particles interact by collision 

Liquid regime <—>  𝜇(I) - 𝜙(I) rheology

- Dense granular media flows like a liquid

- particles interact through both collision and frictional contacts

Dense quasi-static regime <—>  elasto-plastic model

- Very slow deformation

- Particles interact through frictional contacts

49



Kinetic theory of dense granular flows

Haff (1983) ; Andreotti, Forterre and Pouliquen (2013)

- Particles interact  through binary and instantaneous collisions only

- The granular media is dense:  is close to  or 

- Granular temperature:  (Ogawa, 1978)

ϕ ϕm s < < d
Θ = < δv2 >

Sc
an

ne
d 

by
 C

am
Sc

an
ne

r

The granular gas may be described using Navier-Stokes equations:

with
Granular pressure:  

Granular viscosity: 

Collisional dissipation: 

∇ ⋅ ⃗up = 0

ϕρp ( ∂ ⃗up

∂t
+ ⃗u ⋅ ∇ ⃗up ) = ϕρp ⃗g − ∇Pp + ∇(2ηp ·ϵ)

1
2

ϕρp ( ∂Θ
∂t

+ ⃗up ⋅ ∇Θ) = 2ηp ·ϵ : ·ϵ + ∇(K ∇Θ) − Γ

PP = ρp ϕ (1 + 2 (1 + e) ϕ g0(ϕ)) Θ

ηP = f2(ϕ) ρp d Θ1/2

Γ = f(ϕ)
ρp

d
(1 − e2) Θ3/2

Radial distribution function:





: restitution coefficient for binary collisions 

g0(ϕ) =
2 − ϕ

2(1 − ϕ)3

e
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Granular interactions: 𝜇(I) rheology

Da Cruz et al. (2004), Lois et al. (2005)

- Monodisperse spherical particles with density  and diameter 

- Imposed pressure   and velocity  on the top plate 

- Measure the shear stress  that develops on the top plate 

ρp d

P V ⇒ ·γ =
V
H

τ

For large system H>>d a single dimensionless number control the system:  I =
·γ d

P/ρp

μ(I) = μs +
μ2 − μs

I0/I + 1

ϕ(I) = ϕmax + (ϕmin − ϕmax) I

τ = μ(I) P
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Eulerian-Lagrangian model derivation

Local mass & momentum conservation for a fluid-particle mixture

r.~u = 0 and
d⇢~u

dt
+r.(⇢~u⌦ ~u) = r.� + ⇢~g

Fluid phase mass and momentum equations
∂ϵ
∂t

+ ∇(ϵ⟨ ⃗u ⟩f) = 0

ρ f [ ∂ϵ⟨ ⃗u ⟩f

∂t
+ ∇(ϵ⟨ ⃗u ⟩f ⊗ ⟨ ⃗u ⟩f)] = ∇σ f − n ⃗f + ϵρ f g

Vf
x

L

hfif (~x, t) = 1

✏

Z

Vf (t)
f(~y, t)GL(|~x� ~y|)dVy

Maurin (2015) ; Maurin et al. (2015)

Discrete Element Modeling


 Newton’s eq.:                                             +  angular mom.


Contact forces:                               (spring-dashpot model)


Gravity force: 

mp
𝖽 ⃗vp

𝖽t
= ⃗f p

c + ⃗f p
g + ⃗f p

f

⃗f p
g = (π/6) d3 ρp ⃗g

⃗f p
c = ∑

k∈𝒩

⃗f pk
c

Local spatial  
averaging 
Jackson (2000)

Fluid-particle coupling forces


Buoyancy force:


Drag force:                              

⃗f p
b = − πd3

p /6∇p

⃗f p
d =

1
2

ρ f CD
πd2

p

4
⃗uf − ⃗vp ( ⃗uf − ⃗vp)
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Eulerian-Lagrangian bed-load simulations (Maurin PhD, 2015)

coupling

• Turbulence model = Mixing length                              with


• Validation on Frey (2014) experiments (not shown here)

1DV Fluid model (chauchat et al. 2013)   DEM model (YADE)

ν f
t = l2

m
d⟨uf

x⟩
dz

Revil-Baudard and Chauchat (2013)

lm = κ∫
z

−∞

ϕm − ϕ
ϕm

dz

 Maurin PhD (2015) ; Maurin et al. PoF (2015)53



Dense granular flow rheology in bed-load transport

Maurin et al. JFM (2016)            

⌧p(zi), P
p(zi) µ =

⌧p

P p
Shear and Normal stresses: Friction coefficient

I(zi) =
�̇p dp
P p/⇢p

�(zi), �̇
p(zi) = dvp/dz Inertial numberVelocity shear rate: 
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Dense granular flow rheology in bed-load transport

• 27 simulations

➡ 3 diameters (d=3, 6, 12 mm), 3 density ratio (s=1.375, 1.75, 2.5), 3 Shields numbers (0.1, 0.3, 0.6)


• Collapse for I < 2 => the inertial number is the control parameter of the granular flow rheology

�(I) =
�m

1 + b�I

µ(I) = µs +
µ2 � µs

I0/I + 1

Maurin et al. JFM (2016)            

ϕ(I) =
ϕm

1 + bϕI
⟺ Pp = (

bϕϕ

ϕm − ϕ )
2

ρpd2 ·γp2

μ(I) =
τp

PP
⟺ τp = μ(I)Pp ∝ ·γp2

µs = 0.35 ; µ2 = 0.97 ; I0 = 0.69 ; �m = 0.61 ; b� = 0.31

with

• Granular rheology for Eulerian model: 

55



Frictional kinetic theory of granular flow in bed-load transport

Radial distribution function fitted from DEM results 




Chialvo and Sundaresan (2013) ; Chassagne et al. (submitted to PRF) 

+ modifications of viscosity, pseudo-heat diffusion, and restitution coefficient


g0(ϕ) =
2 − ϕ

2(1 − ϕ)3
+

2.71ϕ2

(ϕm − ϕ)3/2

Frictionless grains

𝜇=0

Frictional grains

𝜇=0.4

- Captures dense regime as 𝜇(I)


- Avoid unrealistic behavior at I~1


- Better predict dilute transition 


‣ Especially 𝜙(I) i.e. particle pressure


Chassagne et al. (submitted to PRF)
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Eulerian-Eulerian model derivation

Local mass & momentum conservation for a fluid-particle mixture

r.~u = 0 and
d⇢~u

dt
+r.(⇢~u⌦ ~u) = r.� + ⇢~g

Local spatial averaging 
Jackson (2000)

Vf
x

L

hfif (~x, t) = 1

✏

Z

Vf (t)
f(~y, t)GL(|~x� ~y|)dVy

Fluid phase mass and momentum equations
∂ϵ
∂t

+ ∇(ϵ⟨ ⃗u ⟩f) = 0

ρ f [ ∂ϵ⟨ ⃗u ⟩f

∂t
+ ∇(ϵ⟨ ⃗u ⟩f ⊗ ⟨ ⃗u ⟩f)] = ∇σ f − n ⃗f + ϵρ f g

Solid phase mass and momentum equations

∂ϕ
∂t

+ ∇(ϕ⟨ ⃗u ⟩p) = 0

ρp [ ∂ϕ⟨ ⃗u ⟩p

∂t
+ ∇(ϕ⟨ ⃗u ⟩p ⊗ ⟨ ⃗u ⟩p)] = ∇σp + n ⃗f + ϕρpg

⟨ f ⟩p( ⃗x , t) =
1

n( ⃗x , t) ∑
p

f pG( | ⃗x − ⃗xp | )

n( ⃗x , t)
πd3

p

6
= ϕ( ⃗x , t)

Xp
x

L
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Two-phase flow « two-fluid » equations

∂ϵ
∂t

+ ∇(ϵ⟨ ⃗u ⟩f) = 0

ρ f [ ∂ϵ⟨ ⃗u ⟩f

∂t
+ ∇(ϵ⟨ ⃗u ⊗ ⃗u ⟩f)] = − ∇pf + ∇τf − n⟨ ⃗f p⟩p + ϵρ f ⃗g

∂ϕ
∂t

+ ∇(ϕ⟨ ⃗u ⟩p) = 0

ρp [ ∂ϕ⟨ ⃗u ⟩p

∂t
+ ∇(ϕ ⃗u ⟩p ⊗ ⃗u ⟩p)] = − ∇pp + ∇τp + n⟨ ⃗f p⟩p + ϕρp ⃗g

Fluid-particle interactions 
Drag + Buoyancy

Effective fluid stress 
Viscous effects

Granular stresses 
μ(I) or Kinetic theory of granular flows58



sedFoam: 3D two-phase numerical model for sediment transport
• Based on twoPhaseEulerFoam from H. Rusche (2002) and sedFoam-1.0 from Cheng & Hsu (2014)


• Finite Volume Method 2nd order accuracy in space and time 

• PISO algorithm for pressure-velocity coupling


• Publically available on github: https://github.com/SedFoam/sedfoam

Chauchat et al. (2017) - Geoscientific Model Development

Collaboration Univ. Delaware  
Prof. T.-J. Hsu
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Sedimentation of polystyrene particles in silicon oil

Model ingredients: 
• Stokes drag + hindrance function


• Particle pressure due to enduring contacts:


where  is a modulus (in Pa) and          is the random loose packing fraction


Numerical parameters: 
• Δy=3 10-4 m; Δt=2 10-1s first order upwind scheme for advection - Euler scheme in time

Π0

Johnson & Jackson (1987)

�rlp

pp
e = Π0

(max(ϕ − ϕrlp; 0))
3

(ϕm − ϕ)5
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Sedimentation of polystyrene particles in silicon oil

Excess pore pressure:


Mixture momentum balance: 


Stability condition :       (empirical)CFL =
max | |vp − vf | |Δt

Δy
< 0.7

ϕ

pe = pf � ⇢f g y

D⇢mwm

Dt
= �dpf

dy
� ⇢mg � dpp

dy

Chauchat et al. GMD (2017) 61



2nd open question

The two-fluid model is ill-posed for certain parameter values

Stewart (JCP 1979) : 

The conclusions seem to suggest using the two-fluid model when coarse modeling is appropriate, in spite of ill-posedness. 
However, there are reservations. [...] Furthermore, our analysis merely suggests reasonable physical limits on the applicability of [the 
two-fluid equations]. Whether they, in fact, model reality is a question for confrontation with experiments 

Dinh et al. (2003) : 

Mathematical awkwardness of the two-fluid formulation has led mathematically-minded researchers to caution the utility of 
the two-fluid model [...]. In the contrary, another camp of engineering researchers sees intrinsic values of the two-fluid 
transport equations […]. They regard ill-posedness as a minor artifact, which should be dealt with on a fitness-for-purpose 
basis. Consequently, researchers in this group focused their effort on developing sets of constitutive laws that allow simulation of 
practical two-phase processes. 

Bresch et al. (2018) : Multi-Fluid Models Including Compressible Fluids

Stewart, H. (1979). Stability of two-phase flow calculation using two-fluid models. Journal of Computational Physics, 33(2):259–270.

Dinh, T. N., Nourgaliev, R. R., & Theofanous, T. G. (2003). Understanding of the Ill-posed two-fluid model. Proceedings of the tenth international topical meeting on nuclear reactor 
thermal hydraulics, (pp. 1CD-ROM). Korea, Republic of: KNS. 

Bresch D., Desjardins B., Ghidaglia JM., Grenier E., Hillairet M. (2018) Multi-Fluid Models Including Compressible Fluids. In: Giga Y., Novotný A. (eds) Handbook of Mathematical 
Analysis in Mechanics of Viscous Fluids. Springer, Cham. 62



Laminar bed-load

Index-matching experiments  
• Particles: dp=2mm PMMA ; !p/⍴f = 1.2


• Fluid: Triton X-100 


• Re ~ 1

(Aussillous et al., JFM 2013)

Analytical solution 
• Einstein viscosity: 


• Coulomb friction: μ = constant


• Parabolic velocity profile

(Ouriemi et al., JFM 2009)

νeff = ν f(1 + 2.5ϕ)
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Control parameter = Inertial number: 

Granular stresses: particle-particle interactions

Dense granular flow rheology: μ(I)           (GDR Midi, 2004) 

Represent frictional-collisional interactions in dense granular flows


• Shear stress                                                          (Jop et al., 2006) 

with 


Visco-plastic rheology: contain a yield stress (need regularization) and a non-linear viscous term


Viscosity regularization (Chauchat and Médale, JCP 2014)


By definition:                                     where  is a small parameter

Sp = ∇ ⃗up + ∇ ⃗up T
−

2
3

tr(∇ . ⃗up )

τp = ηp Sp → ηp =
μspp

| |Sp | |
ηp =

μ(I)pp

( | |Sp | |2 + λ2)
1/2 λ

0 1 2 3 4 50.5

0.6

0.7

0.8

0.9

I

µ

µ(I) = µs +
µ2 � µs

I0/I + 1

⌧p = µ(I)pp
Sp

����Sp
����

Plastic transition is approximated by a very viscous fluid rheology controlled by λI =
| |Sp | |d

pp/ρp
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Granular stresses: particle-particle interactions

Particle pressure:                                       2 contributions

• Rate independent: 

               pressure due to enduring contact (Johnson & Jackson, 1987)

pp
e = Π0

(ϕ − ϕrlp)
3

(ϕm − ϕ)5

• Shear induced: 

Shear-induced pressure: lead to bed decompaction  (Maurin et al., 2016) 

0 1 2 3 4 50.2

0.3

0.4

0.5

0.6

0.7

I

q

�(I) =
�m

1 + b I
pp

s = ( b ϕ
ϕm − ϕ )

2

ρp d2 | |Sp | |2

pp = pp
e + pp

s
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Laminar bed-load

• Comparison with analytical solution: Coulomb rheology + Einstein viscosity model


‣ Numerical implementation of granular flow rheology is validated


• Numerical parameters: Δy=3 10-4 m 

Chauchat et al. GMD (2017)

ϕ
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Laminar bed-load

Chauchat and Médale (2010)67

U

Z

0 1E-05 2E-05 3E-05 4E-05 5E-05 6E-05

0.7

0.75

0.8

0.85

Simple (r=1e-6)

Bercovier Engelman (r=1e-6)

Bercovier Engelman (r=1e-7)

Sensitivity to regularization parameter  

Simple: 

Bercovier-Engelman: 

ηp =
μ(I)pp

| |Sp | | + r

ηp =
μ(I)pp

( | |Sp | |2 + r2)
1/2



Laminar bed-load

• Comparison with numerical solution: μ(I) rheology + Einstein viscosity model


‣ Numerical implementation of granular flow rheology is validated


• Numerical parameters: Δy=3 10-4 m 

Chauchat et al. GMD (2017)

ϕϕ
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3rd open question

The 𝜇(I) rheology is ill-posed for certain parameter values and inertial numbers

Barker, T., Schaeffer, D. G., Bohorquez, P., and Gray, J. M. N. T. (2015). Well-posed and ill-posed behaviour of the mu(i) rheology for granular flow. Journal of Fluid Mechanics, 779:794–818

2 options discussed in the literature:


‣ Develop a compressible 𝜇(I) rheology

- Heyman, J., Delannay, R., Tabuteau, H., & Valance, A. (2017). Compressibility regularizes the 𝜇(I)-rheology for dense granular 

flows. Journal of Fluid Mechanics, 830, 553-568.
- Barker, T., Schaeffer, D. G., Shearer, M., and Gray, J. M. N. T. (2017). Well-posed continuum equations for granular flow with 

compressibility and mu(i) rheology. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 
473(2201):20160846.

- Schaeffer, D., Barker, T., Tsuji, D., Gremaud, P., Shearer, M., & Gray, J. (2019). Constitutive relations for compressible granular flow 
in the inertial regime. Journal of Fluid Mechanics, 874, 926-951. doi:10.1017/jfm.2019.476

- …

‣ Use a modified kinetic theory of granular flows to account for friction

- Chialvo, S. and Sundaresan, S. (2013). A modified kinetic theory for frictional granular flows in dense and dilute regimes. Physics of 

Fluids, 25(7):070603.
- Chassagne, R., Chauchat, J., and Bonamy, C. (submitted to PRF). A modified kinetic theory for frictional-collisional bedload 

transport valid from dense to dilute regime.

ill-posed

ill-posed

well-posed

Theoretical

Perturbation analysis :


Δμ
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Balachandar (IJMF 2009)

Finn & Li (IJMF 2016)
G =

d (s − 1)gd
ν

d = 300 μm

Turbulence-particle interactions

• Stokes number:  
‣ Particle response time:  ; Kolmogorov time scale 


‣ Inertial effects: particles do not respond instantaneously to all 
turbulent flow scales 


• Particulate Reynolds number:  

‣ Vortex shedding in the wake of particles is generated = produce 
turbulence at the particle scale

St = τp/τη > 1
τp τη

ℜp =
|ur |dp

νf
> ℜc

p ≈ 400

St = 1 ℜp ≈ 400

Regimes: 

(II) Gravitational settling

(III) Kolmogorov Interactions 


(IV) Inertial range dissipation  

(V) Inertial range production70



• Ensemble averaging:                      Favre-averaged velocities


• Favre-averaged two-phase flow equations:

Favre-averaged two-phase flow equations

⟨ϕ⟩ = lim
N→∞

N

∑
k=1

ϕk
⃗

ũ f =
⟨(1 − ϕ) ⃗uf⟩

1 − ⟨ϕ⟩
⃗ũp =

⟨ϕ ⃗up ⟩
⟨ϕ⟩

∂⟨ϵ⟩
∂t

+ ∇(⟨ϵ⟩ ⟨̃ ⃗u ⟩f ) = 0

ρ f ∂⟨ϵ⟩ ⟨̃ ⃗u ⟩f

∂t
+ ∇(⟨ϵ⟩ ⟨̃ ⃗u ⟩f ⊗ ⟨̃ ⃗u ⟩f ) = − ρ f ∇(⟨ϵ⟩ ˜Δuf ⊗ Δuf) + ∇σ f − ⟨n⟨ ⃗f p⟩⟩ + ⟨ϵ⟩ρ f ⃗g

∂⟨ϕ⟩
∂t

+ ∇(⟨ϕ⟩ ⟨̃ ⃗u ⟩p ) = 0

ρp ∂⟨ϕ⟩ ⟨̃ ⃗u ⟩p

∂t
+ ∇(⟨ϕ⟩ ⟨̃ ⃗u ⟩p ⊗ ⟨̃ ⃗u ⟩p ) = − ρp ∇(⟨ϕ⟩ ˜Δup ⊗ Δup) + ∇σp + ⟨n⟨ ⃗f p⟩⟩ + ⟨ϕ⟩ρp ⃗g

Reynolds-like stresses 
Mixing length, k-𝜀 or LES

Fluid-particle interactions 
Drag + Buoyancy

Granular stresses 
μ(I) or Kinetic theory of granular flows

Effective fluid stress 
Viscous effects ~ negligible
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Fluid turbulence modeling

Reynolds shear stress: 

Large Eddy Simulation: Dynamic Smagorinsky 

 Subgrid stresses


Coefficients  are computed using a dynamical procedure by assuming invariance of turbulent kinetic energy 
dissipation between the resolved and the sub grid scales 

Ck
n

σ fΔ
ij = 2ρ f⟨ϵ⟩Δ2 | |Sf | |(Cf

1Sf
ij − Cf

2
1
3

Sf
kkδij)

σ fΔ
ij = − ρ f⟨ϵ⟩ ˜Δuf ⊗ Δuf and σpΔ

ij = − ρp⟨ϕ⟩ ˜Δup ⊗ Δup

σpΔ
ij = 2ρp⟨ϕ⟩Δ2 | |Sp | |(Cp

1 Sp
ij − Cp

2
1
3

Sp
kkδij)
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Sf = ∇ ⃗uf + ∇ ⃗uf
T

−
2
3

tr(∇ . ⃗uf )



Sheet flow lab experiments (Revil-Baudard PhD, 2014)

• Tilting flume:  
‣ L = 10m ; W = 0.35m ; Slope = 0.5% ; Q = 30 L/s


• PMMA particles:  
‣ dp = 3 mm

‣ !p/!"=1.19

‣ μs = 0.7

• Acoustic Concentration and Velocity Profiler (Hurther et al., 2011) 
‣ 2C Velocity (u and w) : Fs=75 Hz and Z = 3 mm

‣ Concentration (ϕ) : Fs=4.9 Hz and Z = 3 mm

‣ Fixed-bed interface (zc) : Fs=7.5 Hz and Z = 3 mm       

Revil-Baudard et al. (2015, 2016)
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Bed friction velocity:                                  =0.05 m/s u* = ⟨u′ w′ ⟩ |z=0

τm = ρmgSf(Hf − z)

𝜽 ~ 0.5 
Ws/u* ~ 1
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Kinetic Theory of Granular Flows 
Dynamic Smagorinsky model: 

Drift velocity model: 
corresponds to the unresolved drag force (Ozel et al., 2013)


Mesh:  
30M cells (Δx=Δy=1.65 mm ; Δz = 0.4 - 2.2 mm)

Two-phase flow LES of sheet flow (Cheng PhD, 2016)

~ud = \�CD ~ur � b�cCD
c~ur

Cheng et al. (2018)0.0 0.2 0.4 0.6 0.8 1.0
U(m.s−1)

0

5

10

15

20

25

z/
d p

LES + KT

experiment

0.0 0.2 0.4 0.6
α

10−6 10−4 10−2

α

0 1 2 3
τxz(Pa)

0.000 0.002 0.004 0.006 0.008 0.010
TKE (m2/s2)φ

• Good agreement with experiments 


• No tuning parameter (almost…)
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•  Eulerian-Lagrangian modeling  granular rheology in bed-load transport 

➡ μ(I) rheology is accurate in the dense region (φ>0.3)

➡ Frictional kinetic theory : works reasonably well over the full range of  

•  Eulerian-Eulerian modeling  
➡ μ(I) rheology successfully implemented using a regularization technique 

➡ Two-fluid LES: resolve turbulence-particle interactions


•Opens new perspectives for upscaling and application to complex flow configurations 

Open question: Is it possible to derive a well-posed two-fluid model? 

Open question: How to develop a well-posed granular rheology ? μ(I) or kinetic theory? 

⇒

ϕ

Conclusion on sediment transport modeling at the grain-scale
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Outline

1. Coastal modeling at « large scale » 

2. Sediment transport modeling at the grain scale : turbulent and granular processes 

3. Upscaling of fine-scale processes at intermediate scales
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Sand transport by waves: unsteady effects

A. Mathieu PhD (2021)

Waves: Dohmen-Janssen et al. (2002)
Current: Sumer et al. (1996)

Sheet-flow layer thickness

- Proportional to Shields number:

      with 

- Should not depend on particle size 

- but thicker sheet-flow layer observed for fine sand
Why ?

δm
s

dp
= α θ α = 10 − 13
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Oscillating Water Tunnel - O’Donoghue & Wright (2004)

δs



Two-phase flow LES of oscillatory sheet flow

A. Mathieu PhD (2021)

Configuration

O’Donoghue & Wright (2004)

Sine wave: 

-  s

-  m/s

- Stokes layer thickness  m
Particles:

-  s

T = 5
Uf

m = 1.5
δ = 1.26 × 10−3

ρp = 2650 kg . m−3

Medium 
sand

Fine 
sand

dp 

(𝜇m) 280 150

Vs 

(cm/s)

4 1.6
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Two-phase flow LES of oscillatory sheet flow

Medium sand 

Isocontours of concentration :  (brown) and  (silver)


Turbulent coherent structures : Q criterion

ϕ = 0.5 ϕ = 0.08

A. Mathieu PhD (2021) 79



Two-phase flow LES of oscillatory sheet flow
Fine sand 

Behavior is different between medium and fine sand 

Isocontours of concentration :  (brown) and  (silver)


Turbulent coherent structures : Q criterion

ϕ = 0.5 ϕ = 0.08

A. Mathieu PhD (2021) 80



Two-phase flow LES of oscillatory sheet flow

Flow reversal

- Medium sand deposited

- Fine sand still suspended

➡ Sheet-fow layer thickness 
not in phase with free stream 
velocity

Medium Fine

Medium

Fine

A. Mathieu PhD (2021) 81



Two-phase flow LES of oscillatory sheet flow

Medium Fine

Medium

Fine

Acceleration phase

- Flow instabilities are triggered 

- Stronger for medium sand

A. Mathieu PhD (2021) 82



Two-phase flow LES of oscillatory sheet flow

Medium Fine

Medium

Fine

Flow peak

- Flow instabilities are well-
developped 

‣ stronger for fine sand

- Sheet-flow layer thickness 

‣ in-phase for medium sand

‣ phase-lag for fine sand

A. Mathieu PhD (2021) 83



Two-phase flow LES of oscillatory sheet flow

Medium Fine

Medium

Fine

Deceleration phase

- Flow instabilities are well-
developped 

‣ stronger for fine sand

- Sheet-flow layer thickness 

‣ in-phase for medium sand

‣ phase-lag for fine sand

A. Mathieu PhD (2021) 84



Two-phase flow LES of oscillatory sheet flow

Density stratification

Richardson number:        

                            Buoyancy dissipation / production of TKE

➡ Flow reversal

‣ For medium sand: 

- Density stratification is strong enough to damp turbulence 

‣ For fine sand: 

- Density stratification overcome turbulence production 

- The flow is laminarized by the presence of the particles

➡ Flow peak 

‣ always unstable = no effect of particles on turbulence

Ri =
g

ρm

∂ρm/∂y
(∂uf /∂y)2

A. Mathieu PhD (2021) 85



Two-phase flow LES of oscillatory sheet flow

∂ϕ
∂t

+
∂
∂y (ϕ ⟨v⟩p + ϕ′ ⟨v⟩p′ )

=ϕ⟨v⟩p

= 0

Reynolds-averaged sediment mass conservation

Turbulent flux = erosion 

Settling flux = deposition
A. Mathieu PhD (2021)

➡Flow reversal
‣ Essentially stable for medium sand
‣ Stable for fine sand => strong turbulence reduction 

➡Flow peak 
‣ always unstable = no effect on turbulence

−5

0

5

10

15

M
51
2

y/
δ

0◦

〈φ〉〈vs〉
〈φ′vs

′〉
〈φvs〉
〈φ〉

45◦ 90◦ 135◦

−2.5 0.0 2.5
f(φ) (mm.s−1)

−5

0

5

10

15

F
51
2

y/
δ

−2.5 0.0 2.5
f(φ) (mm.s−1)

−2.5 0.0 2.5
f(φ) (mm.s−1)

−2.5 0.0 2.5
f(φ) (mm.s−1)

Sediment fluxes

86



Two-phase flow LES of oscillatory sheet flow

Medium sand

‣ Acceleration phase: 

- Flow instabilities generates strong 

turbulence & erosion

‣ Flow peak:

- Equilibrium between settling and erosion

‣ Deceleration phase: 

- Gravitational settling dominates

‣ Flow reversal:

- Sediments have settled back to the bed

A. Mathieu PhD (2021)
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Two-phase flow LES of oscillatory sheet flow

A. Mathieu PhD (2021)
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Density stratification

=> laminarization

DepositionTurbulent flux = 0 
Plateau formation

Fine sand

‣ Acceleration phase: 

- Stably stratified flow: still deposition

- Shear instabilities delayed

‣ Flow peak:

- Still net erosion 

‣ Deceleration phase: 

- Delayed settling phase

- Density stratification => laminarization

- Formation of concentration plateau

‣ Flow reversal:

- Stably stratified flow

- Reminiscent suspended sediments from 
previous half-wave cycle

Stably 
stratified

Settling 

>


Turbulent flux

Flow 
peak

Turbulent flux 
= 

Settling

Acceleration phase
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•Two-phase flow simulations allows to study complex sediment-flow interactions such as sediment 

transport under waves with a process-based approach 

•Physical explanation for the phase-lag or unsteady effect associated with fine sand 

‣  Stratification => turbulence damping


‣  Reduced turbulent fluxes/erosion

‣  Non-linear sedimentation


•Perspectives 

‣  Characterize regime transitions


➡ Controlling dimensionless numbers?

‣  Infer sediment transport parametrization


➡ Upscaling

Conclusion on upscaling of fine-scale processes
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Open question 1: 
What are the stability conditions for the coupled system of equations wave-current-sediment ? 

Open question 2: 
How to develop a well-posed granular rheology ? μ(I) or kinetic theory ? 

Open question 3: 
Is it possible to derive a well-posed two-fluid model ? 

General conclusion & perspectives
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Job opportunity

18 months postdoc is available to work on a coastal morphodynamic at LEGI (MEPELS project - SHOM)
- develop a mid term (1 to 24 months) hierarchical model
- combine process-based models with reduced complexity approach potentially using AI…


