

Sediment transport & beach morphodynamics

Institut des Mathématiques pour la Planète Terre November 25th 2021

L'océan

en référence

Associate Professor Grenoble Institute of Technology LEGI - ENSE3 Grenoble, France

Julien CHAUCHAT

PARCOURS

2018	Habilitation à diriger des
2015-2016	Sabbatical at University
2009-pres.	Associate Professor GIN
2008-2009	Postdoc at IUSTI Aix-Ma
2003-2007	PhD at University of Cae
2001-2002	High-School teacher - N
2000-2001	Master 2 at Ecole Centra

- s recherches in Environmental Science
- of Delaware (USA) Prof. Tom HSU
- NP ENSE3/LEGI
- arseille University
- en-Basse Normandie
- Nobody is perfect ;-)

Mechanical engineering

rale de Nantes - Naval Hydrodynamics and Ocean Engineering

LEGI: Geophysical and Industrial Flows Lab

Human Ressources ≈ 110 people

Permanent staff ~ 40 people PhD & Postdocs ~ 50 people

CORIOLIS platform

The largest rotating hydraulic basin in the world

D = 13m ; m=350T

Collaborations

- E. Barthélémy, H. Michallet, J.-M. Barnoud, S. Mercier, P.-A. Barraud
- INRAE, Grenoble: G. Richard, P. Frey, <u>R. Chassagne</u>, <u>H. Rousseau</u>
- **3S-R, Grenoble:** B. Chareyre, <u>D. Marzougui</u>
- IMFT, Toulouse: <u>R. Maurin</u>
- LEGOS, Toulouse: P. Marchesiello
- SHOM, Brest: T. Garlan
- ARTELIA Group, Grenoble: O. Bertrand
- IUSTI, Marseille: M. Médale, P. Aussillous, E. Guazzelli, M. Paihla, Y. Forterre, O. Pouliquen
- University of Delaware, USA: T.-J. Hsu, Z. Cheng, Y. Kim, J. Puleo, R. Mieras
- NRL: J. Calantoni
- KIT, Germany: O. Eiff, Y. Akutina
- Pennsylvania State Univ., USA: X. Liu

• LEGI, Grenoble: T. Revil-Baudard, T. Nagel, A. Mathieu, H. Shafiei, D. Hurther, C. Bonamy, G. Fromant, A. Wirth, G. Balarac,

Motivations

Soulac-sur-mer, France (source: twitter, L. Theillet Sud-Ouest)

Luijendijk et al. CE (2017)

At the European scale

- 20% of European coasts are in erosion 15 km² / year 1.
- Sandy beaches are mostly in erosion 2.
- Coastal marshes are mostly in accretion 3.

Majority of European coasts are at moderate to high risk of erosion

Tendances	Types géomorphologiques						
	Côtes rocheuses		Plages		Rivages limono- vaseux		
	%	km	%	km	%	km	
Engraissement	NS	34	10,4	232	<mark>48,6</mark>	119	
Stabilité	64,4	1216	45,8	1022	35,1	86	
Erosion	23	436	41,4	924	11,8	29	
Pas de données	10,6	200	2,3	52	4,5	11	
Total	100	1886	100	2230	100	245	

The focus of this lecture is on sandy beaches

Le climat de la France au XXI^è siècle - Volume 3 - Evolution du niveau de la mer - février 2012

Motivations

Philosophy of this lecture

In coastal morphydynamics there are mainly 2 approaches:

Reductionism: Process-based modeling

« Reductionism is the modeling methodology whereby the development and behavior of large (pattern)-scale features are reduced entirely to their underlying fundamental processes. » Werner (2015)

Our Content of Cont

« Universality is the modeling methodology whereby the overall characteristics of behaviors and patterns are modeled with the simplest system within a class of systems sharing these same behaviors and characteristics, despite being composed of very different building blocks »

In what follows, I present you my personal vision of coastal erosion which rely on process-based modeling

and not reduced-complexity modeling

Werner (2015)

Morphodynamics: a multi-scale problem

1. Coastal modeling at « large scale »

2. Sediment transport modeling at the grain scale : turbulent and granular processes

3. Upscaling of fine-scale processes at intermediate scales

Outline

1. Coastal modeling at « large scale »

2. Sediment transport modeling at the grain scale : turbulent and granular processes

3. Upscaling of fine-scale processes at intermediate scales

Outline

Wave energy spectrum in the ocean

Figure 3.2: Sketch of the relative amounts of energy as a function of wave period in ocean waves. The top line gives the classification based on wavelength, the line below the classification based on the wave-generating force, and the bottom line the classification based on the restoring force. After Munk (1950) and Kinsman (1965). 11

Bosboom & Stive (2020)

For a perfect irrotational fluid flow, a velocity potential ϕ exists such that

$$\overrightarrow{u} = \overrightarrow{\nabla} \phi$$

and the Navier-Stokes equations reduces to:

$$\begin{aligned} \Delta \phi(x, z, t) &= 0, \quad \forall (x, z) \in \mathbb{R}^2, \, \forall t \in \mathbb{R}^+ \\ \frac{\partial \phi}{\partial t} &+ \frac{(\nabla \phi)^2}{2} + \frac{p}{\rho} + gz = C(t) \end{aligned}$$

HAsymptotic expansion in wave steepness: $\epsilon = -$:

$$\phi(x, z, t) = \phi_0 + \epsilon \ \phi_1(x, z, t) + \epsilon^2 \ \phi_2(x, z, t) + \epsilon^3 \ \phi_3(x, z, t) + \epsilon^3 \ \phi_3(x$$

$$\eta(x,t) = \eta_0 + \epsilon \ \eta_1(x,t) + \epsilon^2 \ \eta_2(x,t) + \epsilon^3 \ \eta_3(x,t) + .$$

Stokes (1847)

More advanced lecture by G. Richard tomorrow

Stokes wave model: linear theory

Potential:
$$\phi(x, z, t) = \frac{a g}{\omega} \frac{\cosh(k(z+h))}{\cosh(kh)} \cos(kh)$$

• Dispersion relation:
$$\omega^2 = g k \tanh(kh)$$

13

Stokes wave model: limits of the linear theory

Linear theory valid for

Small steepness:
$$\epsilon = \frac{H}{L} < < 1$$

Large relative depth: $\frac{h}{L} > > 1$

Limit of the linear theory is given by the Ursell number:

$$U_r = \frac{H}{L} \left(\frac{L}{h}\right)^3 \propto \frac{\phi_2}{\phi_1} < <1$$

Not very relevant for beach morphodynamics but still very useful

Stokes wave model: non-linear effects

2nd order velocity potential:

- Non-linear waves are velocity skewed: peak crest velocity is larger than trough velocity
- Mean water level is not zero
- Non-closed trajectories of « fluid particles » implies mass flux toward the coast = Stokes drift

Stokes (1847)

11.

Stokes wave model: Wave energy

Total wave energy:

- Potential energy contained in one wavelength: associ $E_P = \frac{1}{L} \int_0^L \int_0^\eta \rho g \ z dz \ dx = \frac{1}{L} \int_0^L \frac{1}{2} \rho g$
- Kinetic energy contained in one wavelength: $E_C = \frac{1}{L} \int_0^L \int_{-h}^{\eta} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}{L} \int_{0}^{L} \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx = -\frac{1}$
- Equipartition between potential and kinetic energy: E_{c}

Total energy :
$$E_w = \frac{1}{2}\rho g a^2 = \frac{1}{8}\rho g H^2$$
 Wave height: $H =$

Wave power:
$$P = E_w C_g$$
 with group celerity: $C_g = \frac{C}{2} \left(1 + \frac{2kh}{\sinh(2kh)} \right)$

$$E_w = E_P + E_C$$

ciated with wave motion

$$g \eta^2 dx = \frac{1}{L} \int_0^L \frac{1}{2} \rho g a^2 \sin^2(kx) dx = \frac{1}{4} \rho g a^2$$

$$\frac{1}{L} \int_0^L \int_{-h}^0 \frac{1}{2} \rho \left(u^2 + w^2 \right) dz \, dx + o(\epsilon) = \frac{1}{4} \rho g a^2$$

$$E_C = E_P$$

Stokes wave model: wave groups

Superposition of 2 linear solutions: bi-chromatic waves

- 2 wave frequency: ω_1 and ω_2 ($\omega_1 \approx \omega_2$)
- If $\exists (n; m) \in \mathbb{N}^2$ such that $\omega_g = n\omega_1 = m\omega_2$ **Then** smallest value of ω_g = wave group frequency

Free surface elevation:

$$\eta^{T} = A_{1} \left(sin(k_{1}x - \omega_{1}t) + sin(k_{2}x - \omega_{2}t) \right)$$
$$\eta^{T} = A_{1} 2 \sin\left(\frac{(k_{1} + k_{2})x - (\omega_{1} + \omega_{2})t}{2}\right) \cos\left(\frac{(k_{1} - k_{2})x - (\omega_{2}t)}{2}\right)$$

with $\omega_1 - \omega_2 < < \omega_1 + \omega_2$

Stokes wave model: wave groups

Credits: Nate Lawrence

18 https://www.surfline.com/surf-news/city-surf-changing-lives-san-francisco/41874

Irregular waves modeling

f[Hz]

JONSWAP (Hasselman et al., 1973) : North Sea

Bosboom & Stive (2020)

Irregular waves modeling

Transport equation for wave action spectral density:

Large number of DoF per node: $N_{\theta} \times N_{\omega}$

Community models: WW3 (USA), SWAN (Dutch), TOMAWAC (French)

Data predicted by Fleet Numerical Meteorology and Oceanography Center (FNMOC) for now

20

Irregular waves nearshore

 D_w : Wave dissipation due to breaking

 $D_w = \frac{3\sqrt{1}}{16}$ 16

Thornton and Guza (1986)

$$\frac{\pi}{2} \rho g \frac{B_b^3}{\gamma^4 h^5} f_p H_{rms}^7$$

 $\gamma_b = \frac{H_{rms}}{L} \approx 0.3 - 0.8$: wave breaking parameter h

Bosboom & Stive (2020)

21

Wave induced mass flux: Stokes drift

Return current that compensate the onshore mass flux due to breaking waves

Ardhuin (2006) Bosboom & Stive (2020) From Stokes 2nd order theory:

$$M = \rho \int_{-h}^{\eta} u(x, z) dz = E \frac{C_g}{C}$$

The mass flux is

- Proportional to energy flux
- Preferentially located near the surface
- Oriented toward the beach (wave propagation direction)
- May be on the order of 0.5 m/s

Stokes drift

Mass conservation implies a return current: undertow

- Located near the bottom
- Oriented offshore

Wave effects on currents

Bosboom & Stive (2020)

Radiation stress

depth-integrated and wave-averaged flux of momentum due to waves

(Longuet-Higgins and Stewart, 1964)

- Raises the mean water level in the surf zone (set-up);
- Drives a longshore current (oblique waves).

Coastal flooding in the context of climate change

Atmospheric contributions

- Pressure: $\Delta P_{atm} = 10 \ hPa \leftrightarrow \Delta h = 0.1 \ m$
- Winds: dynamical effects

Wave contributions

- Wave set-up
- Swash

Le climat de la France au XXI^è siècle - Volume 3 - Evolution du niveau de la mer - février 2012 25

Possible non-linear interactions between sea level rise, wave propagation and coastal bathymetric evolution but these processes have not been addressed so far...

Open question?

Links with sediment transport and morphodynamics

PhD F.X. Chassagneux (2010)

PhD F. Grasso (2009)

Sediment transport regimes

Dimensionless numbers

Sediment transport modeling

Conventional model

Pros

- Simple
- Applicable at large-scale

Cons

- Empirical formulas
 - Especially bed-load
 - ► Large scatter (~100%)
 - Missing physics
- Arbitrary separation between bed-load and suspended-load

Jenkins and Hanes JFM (1998)

Bed-load transport

Bed-load formula:
$$\vec{\Phi} = \frac{\vec{q_b}}{\sqrt{(s-1)gd_{50}^3}}$$

Current:
$$\overrightarrow{\Phi_c} = \max \left[K(\theta_c - \theta_{cr})^n; 0 \right] \quad \frac{\overrightarrow{\tau_c}}{\tau_c}$$

Waves:
$$\overrightarrow{\Phi_{w}} = \frac{1}{T} \int_{0}^{T} \max \left[K(\theta_{w}(t) - \theta_{cr})^{n}; 0 \right] \frac{\overrightarrow{\tau_{w}}}{|\tau_{w}|} dt$$

 $\overrightarrow{\Phi_{w}} \approx \max \left[K(\tilde{\theta_{w}} - \theta_{cr})^{n}; 0 \right] \frac{\overrightarrow{\tau_{w}}}{|\tau_{w}|} \text{ sinusoidal}$

Waves + current:

complex problem - no simple solution

Bosboom & Stive (2020)

oidal waves = no sand-flux

Bed-load transport

Bed-load formula for wave and currents

$$\vec{\Phi} = \frac{q_b}{\sqrt{(s-1)gd_{50}^3}} = \max\left[12\theta^{1/2}(\theta_{sf} - \theta_c); 0\right] \frac{\tau_{sf}}{\tau_{sf}}$$

Dirty kitchen of coastal engineering

$$\vec{\Phi} = \left(\Phi_{||}; \Phi_{\perp}\right)^{T} \text{ with } \Phi_{||} = \text{transport in direction of current}$$
$$\Phi_{||} = \max\left[\Phi_{||1}; \Phi_{||2}\right] \text{ with } \Phi_{||1} = 12\theta_{m}^{1/2}(\theta_{m} - \theta_{c}) \text{ and}$$
$$\Phi_{\perp} = 12\frac{0.1907\theta_{w}^{2}}{\theta_{x}^{3/2} + 3/2\theta_{m}^{3/2}} \left(\theta_{m}\sin(2\phi) + 1.2\gamma_{w}\theta_{w}\sin(\phi_{w})\right)$$

 γ_w : wave asymmetry factor

Empirical formula providing (very) limited success to predict sandbar migration

nt and Φ_{\perp} = transport perpendicular to the current

 $|\Phi_{||2} = 12 \left((0.9534 + 0.1907 \cos(2\phi_w)) \theta_w^{1/2} \theta_m + 0.229 \gamma_w \cos(\phi_w) \theta_w^{3/2} \right)$

(Soulsby and Damgaard, 2005)

30

Bed-load transport

Half-wave cycle concept (Dibajnia and Watanabe, 1992)

- Asymmetric transport by non-linear waves
- Effect of phase lag between mobilization and transport

Dohmen-janssen et al. (2002)

Sediment load

On-going wave-cycle:
$$\Omega_i = \max\left(11\left(\left|\theta_i\right| - \theta_{cr}\right)^{1.2}, 0\right)$$

Previous wave-cycle: $\Omega_{tc/ct}$ phase-lag/unsteady contributions **Velocity scale:** Based on friction velocity: $\sqrt{\theta_i}$

Direction: Aligned with the shear stress direction:

where *i* stands for crest or trough

$$\vec{\Phi} = \frac{1}{T} \left[\sqrt{\theta_c} T_c \left(\Omega_{cc} + \frac{T_c}{2T_{cu}} \Omega_{tc} \right) \frac{\vec{\theta_c}}{\left| \theta_c \right|} + \sqrt{\theta_t} T_t \left(\Omega_{tt} + \frac{T_t}{2T_{tu}} \Omega_{ct} \right) \frac{\vec{\theta_t}}{\left| \theta_t \right|} \right]$$
31

 θ_i

Camenen and Larson (2007) Van Der A et al. (2013)

Suspended-load and bed evolution

Adv.-Diff equation for C:
$$\frac{\partial C}{\partial t} + \vec{\nabla} \cdot (\vec{U}C) - \frac{\partial W^c C}{\partial z} = \vec{\nabla}_h (K_h^C \vec{\nabla} C) + \frac{\partial}{\partial z} (K_z^C \frac{\partial C}{\partial z})$$

Settling velocity : W^{c}

Bed morphological evolution:

$$\frac{\partial z_b}{\partial t} + \frac{f_{mor}}{1-p} \overrightarrow{\nabla}_h \cdot \overrightarrow{q_b} = \frac{1}{1-p} \left(E - D \right)$$

= Hyperbolic equation

Erosion flux : $E = E_0 \max(\tau_{sf}/\tau)$

Morphological factor : f_{mor} (may be up to 100)

Morphological time scales >> Hydrodynamic time scales

=> Speed-up morphodynamics effects

Useful in practice but questionable from a mathematical perspective...

$$\tau_{ce} - 1; 0)$$

Summary of nearshore model equations

$$\frac{\partial \zeta}{\partial t} + \frac{\partial hu}{\partial x} + \frac{\partial hv}{\partial y} + \frac{\partial w^*}{\partial \sigma} = 0$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{w^*}{h} \frac{\partial u}{\partial \sigma} = fv - \frac{1}{\rho_0} \frac{\partial F}{\partial x}$$

$$\frac{\partial A}{\partial t} + \frac{\partial C_{gx}A}{\partial x} + \frac{\partial C_{gy}A}{\partial y} + \frac{\partial C_{g\theta}A}{\partial \theta} = -\frac{D_w}{\sigma}$$

$$\frac{\partial S_r}{\partial t} + \frac{\partial c_x S_r}{\partial x} + \frac{\partial c_y S_r}{\partial y} + \frac{\partial c_\theta S_r}{\partial \theta} = D_w - D_r$$

$$\frac{\partial C}{\partial t} + \nabla \cdot \left(\overrightarrow{U}C \right) - \frac{\partial W^c C}{\partial z} = \nabla_h \left(K_h^c \nabla C \right) + \frac{\partial z_h}{\partial t} + \frac{f_{mor}}{1 - p} \nabla_h \cdot \overrightarrow{q_h} = E - D$$

8 non-linearly coupled PDEs

 $\frac{P}{x} + F_x + M_x + \frac{1}{h^2} \frac{\partial}{\partial \sigma} \left(\nu_V \frac{\partial u}{\partial \sigma} \right) \dots \text{ same for } v + w$

Roller energy

 $+\frac{\partial}{\partial z}\left(K_z^C\frac{\partial C}{\partial z}\right)$

Numerical simulation of sandbar migration

- CROCO with spectral wave model
- Bedload: van Der A et al. (2013)
- Domaine size : 200 m cross-shore
- Grid resolution : 1.5 m ; time step: 0.1s
- Measurements:
 - Wave height
 - Current profiles
 - Sediment concentration profiles
 - Bathymetry
- 2 Wave conditions

	Hs (m)	Tp (s)	Duration (h)
LIP1B	1.4	5	18
LIP1C	0.6	8	13

Roelvink and Reniers (1995)

Hydrodynamic calibration

Shafiei et al. (submitted to ocean modeling)

Friction coefficient, breaking parameter and roller coefficients are tuned (same parameters for both configurations)

Morphodynamic simulations

Hs = 1.4 m - Tp = 5 s

Shafiei et al. (submitted to ocean modeling)

Onshore/offshore sandbar migration reproduced for varying wave conditions
Morphodynamic simulations

Offshore sandbar migration is due to suspended load undertow driven sand transport

Shafiei et al. (submitted to ocean modeling)

Onshore sandbar migration is due to wave skewness effect on sand transport

1st open question

Open question: What are the stability conditions for the coupled system of equations?

0.6

(m)

0.2 p

200

- Coupling between morphodynamics and wave-current model
- Stability associated with morphological acceleration?

This is just an example but we have observed instabilities in other situations

Numerical simulation of the Truc vert ECORS 2008 field campaign

Measured bathymetries Truc vert ECORS 2008 field campaign

April 4th 2008

Senechal et al. (2011)

Morphodynamic simulations: bar positions & quantification

Brier Skill Score :

Depth (m)

Long-shore (m)

-500 0 500 Long-shore (m) 41

Vidéos

CROCO

Best BSS with CROCO

Conclusion on coastal modeling at « large scale »

► Summary

- morphodynamics at time-scales of storm events
- Main sources of errors:
 - Wave-current interactions
 - Wave propagation in shallow coastal zones (H \sim L/2)
 - Sediment transport modeling

Perspectives

- Use wave-resolving models for beach morphodynamics

P. Marchesiello LEGOS is developing the non-hydrostatic version of CROCO

PhD of Hung funded by IMPT at LAMA/LEGI, co-supervised by M. Kazakhova

- Improve sand transport formula (Camenen and Larson, 2007; van Der A et al., 2013)

Active research field in coastal engineering

Use multi-phase flow approaches to infer the fine-scale processes and improve parametrizations (collab. with T. Hsu UD)

Open question: What are the stability conditions of nearshore numerical models when Δx and Δt tends to zero? What is the role of sandy beaches morphodynamical evolution on coastal flooding risks?

- Coupled hydrodynamic-spectral wave-sediment transport equations models allows to simulate nearshore

- Predictability of nearshore morphodynamics is still poor and highly sensitive to empirical coefficients of the model

Perspectives

Wave-resolving models coupled with sediment transport

- CROCO model P. Marchesiello (LEGOS, Toulouse)
 - 3D non-hydrostatic model
 - suspended-load and bed evolution
- Less modeling hypothesis but limited to shorter time-scales

1. Coastal modeling at « large scale »

2. Sediment transport modeling at the grain scale : turbulent and granular processes

3. Upscaling of fine-scale processes at intermediate scales

Outline

Motivations

Conventional model

Pros

- Simple
- Applicable at large-scale

Cons

- Empirical formulas
 - Especially bed-load
 - ► Large scatter (~100%)
 - Missing physics
- Arbitrary separation between bed-load and suspended-load

Two-phase flow model

Pros

- Resolve continuously sediment transport profile
- Incorporate fine-scale processes:
 - ► Turbulence
 - Turbulence-particle interactions
 - Particle-particle interactions
- No arbitrary separation

Cons

max

- Complexity of the processes to be modeled
- Very expensive
- Limited to 'small scale' applications

The role of granular interactions & fluid turbulence

$$d_p = 2 \text{ mm} ; \frac{\rho^p}{\rho^f} = 1.19$$
$$Re \approx 1 ; \theta \approx 0.5 ; S \approx \infty$$

Shields number:
$$\theta = \frac{\rho^f u_*^2}{\Delta \rho g d_p} > 0.3$$

Suspension number: $S = \frac{W_s}{M_s}$ \mathcal{U}_*

$$d_p = 3 \text{ mm} ; \frac{\rho^p}{\rho^f} = 1.19$$

 $Re \approx 10^5 ; \theta \approx 0.5 ; S \approx 1$

Dimensionless numbers

Stokes number:
$$St = \frac{t_p}{t_f}$$

Reynolds number: $Re = \frac{UE}{\nu^f}$

48

Granular interactions

Gaseous regime <--> kinetic theory of granular flows

- Dilute and rapid flow
- Particles interact by collision

Liquid regime $\langle - \rangle \mu(\mathbf{I}) - \phi(\mathbf{I})$ rheology

- Dense granular media flows like a liquid
- particles interact through both collision and frictional contacts

Dense quasi-static regime <-> elasto-plastic model

- Very slow deformation
- Particles interact through frictional contacts

GDR Midi (2004), Forterre and Pouliquen (2008)

Kinetic theory of dense granular flows

The granular gas may be described using Navier-Stokes equations:

$$\nabla \cdot \overrightarrow{u^{p}} = 0$$

$$\phi \rho_{p} \left(\frac{\partial \overrightarrow{u^{p}}}{\partial t} + \overrightarrow{u} \cdot \nabla \overrightarrow{u^{p}} \right) = \phi \rho_{p} \overrightarrow{g} - \nabla P^{p} + \nabla \left(2\eta^{p} \overline{\overrightarrow{e}} \right)$$

$$\frac{1}{2} \phi \rho_{p} \left(\frac{\partial \Theta}{\partial t} + \overrightarrow{u^{p}} \cdot \nabla \Theta \right) = 2\eta^{p} \overline{\overrightarrow{e}} : \overline{\overrightarrow{e}} + \nabla (K \nabla \Theta) - \Gamma$$
Granular products: $P^{p} = \rho_{p} \phi \left(1 + 2 \left(1 + e \right) \phi \phi \left(\phi \right) \right)$

with

Granular pressure: $P^{-} = \rho_{p} \phi (1 + 2 (1 + e) \phi g_{0}(\phi)) \Theta$ Granular viscosity: $\eta^P = f_2(\phi) \rho_p \ d \ \Theta^{1/2}$ Collisional dissipation: $\Gamma = f(\phi) \frac{\rho_p}{d} (1 - e^2) \Theta^{3/2}$

- Particles interact through binary and instantaneous collisions only - The granular media is dense: ϕ is close to ϕ_m or s < d- Granular temperature: $\Theta = \langle \delta v^2 \rangle$ (Ogawa, 1978)

Radial distribution function:

$$g_0(\phi) = \frac{2 - \phi}{2(1 - \phi)^3}$$

e: restitution coefficient for binary collisions

Haff (1983); Andreotti, Forterre and Pouliquen (2013)

Granular interactions: μ **(I) rheology**

_ Monodisperse spherical particles with density ho_p and diameter dImposed pressure P and velocity V on the top plate $\Rightarrow \dot{\gamma} = \frac{V}{H}$

- Measure the shear stress τ that develops on the top plate

 $\frac{\dot{\gamma} d}{\overline{}}$ For large system H>>d a single dimensionless number control the system: I = -

$$\mu(I) = \mu_s + \frac{\mu_2 - \mu_s}{I_0/I + 1}$$
$$\phi(I) = \phi_{max} + (\phi_{min} - \phi_m)$$

$$\tau = \mu(I) P$$

Da Cruz et al. (2004), Lois et al. (2005)

Eulerian-Lagrangian model derivation

Fluid phase mass and momentum equations

$$\frac{\partial \epsilon}{\partial t} + \nabla \left(\epsilon \langle \overrightarrow{u} \rangle^f \right) = 0$$

$$\Phi^f \left[\frac{\partial \epsilon \langle \overrightarrow{u} \rangle^f}{\partial t} + \nabla \left(\epsilon \langle \overrightarrow{u} \rangle^f \otimes \langle \overrightarrow{u} \rangle^f \right) \right] = \nabla \sigma^f - n \overrightarrow{f} + \epsilon \rho^f g$$

$$+\nabla .(\rho \vec{u} \otimes \vec{u}) = \nabla .\overline{\overline{\sigma}} + \rho \vec{g}$$

Maurin (2015) ; Maurin et al. (2015) **Discrete Element Modeling** Newton's eq.: $m_p \frac{d\vec{v}^p}{dt} = \vec{f}_c^p + \vec{f}_g^p + \vec{f}_f^p + angular mom.$ Contact forces: $\vec{f}_c^{\vec{p}} = \sum \vec{f}_c^{pk}$ (spring-dashpot model) Gravity force: $\vec{f}_g^{\vec{p}} = (\pi/6) \ d^3 \ \rho^p \ \vec{g}$ Fluid-particle coupling forces Buoyancy force: $\vec{f}_{p}^{\vec{p}} = -\pi d_{p}^{3}/6\nabla p$ rce: $\vec{f}_d^{\vec{p}} = \frac{1}{2} \rho^f C_D \frac{\pi d_p^2}{4} \left| \vec{u}^f - \vec{v}^{\vec{p}} \right| \left(\vec{u}^f - \vec{v}^{\vec{p}} \right)$ Drag force:

$$(1-\phi)\rho^{f}\frac{\partial \langle u_{x}^{f} \rangle}{\partial t} = \underbrace{\frac{\partial R_{xz}^{f}}{\partial z}}_{Turb. \ stress} + \underbrace{\frac{\partial \tau_{xz}^{f}}{\partial z}}_{Visc. \ stress} + \underbrace{(1-\phi) \ \rho^{f} \ g \ S_{0}}_{Gravity} - \underbrace{r_{xz}}_{Gravity}$$

- Validation on Frey (2014) experiments (not shown here)

Maurin PhD (2015) ; Maurin et al. PoF (2015)

Dense granular flow rheology in bed-load transport

54

Maurin et al. JFM (2016)

Dense granular flow rheology in bed-load transport

- 27 simulations

• Granular rheology for Eulerian model:

with

$$\mu_s = 0.35$$
; $\mu_2 = 0.97$; $I_0 = 0.69$; $\phi^m = 0.61$; $b_\phi = 0.31$

→ 3 diameters (d=3, 6, 12 mm), 3 density ratio (s=1.375, 1.75, 2.5), 3 Shields numbers (0.1, 0.3, 0.6)

Collapse for I < 2 => the inertial number is the control parameter of the granular flow rheology

55

$$\phi(I) = \frac{\phi_m}{1 + b_{\phi}I} \iff P^p = \left(\frac{b_{\phi}\phi}{\phi_m - \phi}\right)^2 \rho^p d^2$$
$$\mu(I) = \frac{\tau^p}{P^p} \iff \tau^p = \mu(I)P^p \propto \dot{\gamma}^{p^2}$$

Frictional kinetic theory of granular flow in bed-load transport

$$g_0(\phi) = \frac{2 - \phi}{2(1 - \phi)^3} + \frac{2.71\phi^2}{(\phi_m - \phi)^{3/2}}$$

Eulerian-Eulerian model derivation

$$\frac{\partial \epsilon}{\partial t} + \nabla \left(\epsilon \langle \vec{u} \rangle^f \right) = 0$$

$$p^f \left[\frac{\partial \epsilon \langle \vec{u} \rangle^f}{\partial t} + \nabla \left(\epsilon \langle \vec{u} \rangle^f \otimes \langle \vec{u} \rangle^f \right) \right] = \nabla \sigma^f - n\vec{f} + \epsilon \rho^f g$$

Two-phase flow « two-fluid » equations

$$\frac{\partial \epsilon}{\partial t} + \nabla \left(\epsilon \langle \overrightarrow{u} \rangle^{f} \right) = 0$$
$$\rho^{f} \left[\frac{\partial \epsilon \langle \overrightarrow{u} \rangle^{f}}{\partial t} + \nabla \left(\epsilon \langle \overrightarrow{u} \otimes \overrightarrow{u} \rangle \right) \right]$$

$$\frac{\partial \phi}{\partial t} + \nabla \left(\phi \langle \overrightarrow{u} \rangle^p \right) = 0$$
$$\rho^p \left[\frac{\partial \phi \langle \overrightarrow{u} \rangle^p}{\partial t} + \nabla \left(\phi \overrightarrow{u} \right)^p \otimes \overrightarrow{u} \right]$$

Effective fluid stress

Viscous effects

 $\rangle^{f} = -\nabla p^{f} + \nabla \tau^{f} - n \langle \vec{f}^{p} \rangle^{p} + \epsilon \rho^{f} \vec{g}$

Fluid-particle interactions

Drag + Buoyancy

 $\vec{u}\rangle^{p}\Big] = -\nabla p^{p} + \nabla \tau^{p} + n\langle \vec{f}^{p}\rangle^{p} + \phi \rho^{p} \vec{g}$

Granular stresses

 μ (I) or Kinetic theory of granular flows

sedFoam: 3D two-phase numerical model for sediment transport

- Based on twoPhaseEulerFoam from H. Rusche (2002) and sedFoam-1.0 from Cheng & Hsu (2014) \bullet
- Finite Volume Method 2nd order accuracy in space and time
- **PISO algorithm** for pressure-velocity coupling
- **Publically available** on github: *https://github.com/SedFoam/sedfoam*

	Chauchat et al. (2017) - Geoscientific Model Developme			
	Geoscientific Model Development An interactive open-access journal of the European Geosciences Union			
6+ Canar	EGU.eu EGU Journals EGU Highlight Articles Contact Imprint			
Submit a manuscript Kracking	https://doi.org/10.5194/gmd-2017-101 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.		Discuss	ion papers
About		Abstract	Discussion	Metrics
Editorial board				
Articles	Model description paper		0	7 Jun 2017
Special issues	SedFoam-2.0: a 3D two-phase flow numerical model for sediment	C Review stat	us	
Highlight articles	transport	This discussion paper is under review for the journal Geoscientific Model Development (GMD).		
Subscribe to alerts	Julien Chauchat ¹ , Zhen Cheng ^{2,a} , Tim Nagel ¹ , Cyrille Bonamy ¹ , and Tian-Jian Hsu ²			
Peer review	¹ University of Grenoble Alpes, LEGI, G-INP, CNRS, F-38000 Grenoble, France			
For authors	DE 19711, USA			
For editors and referees	*now at: Applied Ocean Physics & Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543	3, USA		
	Received: 22 Apr 2017 – Accepted for review: 05 Jun 2017 – Discussion sta	rted: 07 Jun 201	7	
User ID 🔹				
Password	Abstract. In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The			
New user? > Lost login?	olver is extended upon twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD toolbox OpenFOAM. In this approach the			
	sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sedin	ment stresses. In	the proposed	solver,
	Even the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment			ay µ(1).
Degu_gmd	transport: a simple mixing length model (one-dimensional configuration only), a k - ϵ and a k - ω model. The numerical implementation is first			
	demonstrated by two validation test cases, sedimentation of suspended particles and laminar bed-lo	ad. Two applicati	ons are then in	ivestigated

Citation: Chauchat, J., Cheng, Z., Nagel, T., Bonamy, C., and Hsu, T.-J.: SedFoam-2.0: a 3D two-phase flow numerical model for sediment transport, Geosci, Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-101, in review, 2017.

Collaboration Univ. Delaware Prof. T.-J. Hsu

Sedimentation of polystyrene particles in silicon oil

Physical parameters: LMSGC experiment - MRI measurements Pham Van Bang et al. (2006)

Fluid phase:

• $\eta_f = 20.10^{-3} \text{ Pa s} (200 \times \text{water})$

 $ho_f = 0.95 \text{ kg m}^{-3}$

Model ingredients:

- Stokes drag + hindrance function
- Particle pressure due to enduring contacts:

Numerical parameters:

• $\Delta y=3 \ 10^{-4} \text{ m}$; $\Delta t=2 \ 10^{-1} \text{s}$ first order upwind scheme for advection - Euler scheme in time

Solid phase:

$$d = 0.29 \pm 0.03 \text{ mm}$$

$$\rho_p = 1.05 \, \text{kg m}^{-1}$$
 $\phi^0 = 0.48$

$$p_e^p = \Pi_0 \frac{\left(\max(\phi - \phi_{rlp}; 0)\right)^3}{\left(\phi_m - \phi\right)^5}$$

Johnson & Jackson (1987)

where Π_0 is a modulus (in Pa) and ϕ_{rlp} is the random loose packing fraction

60

Chauchat et al. GMD (2017)

2nd open question

The two-fluid model is ill-posed for certain parameter values

Stewart (JCP 1979) :

The conclusions seem to suggest using the two-fluid model when coarse modeling is appropriate, in spite of ill-posedness. However, there are reservations. [...] Furthermore, our analysis merely suggests reasonable physical limits on the applicability of [the two-fluid equations]. Whether they, in fact, model reality is a question for confrontation with experiments

Dinh et al. (2003) :

Mathematical awkwardness of the two-fluid formulation has led mathematically-minded researchers to caution the utility of the two-fluid model [...]. In the contrary, another camp of engineering researchers sees intrinsic values of the two-fluid transport equations [...]. They regard ill-posedness as a minor artifact, which should be dealt with on a fitness-for-purpose basis. Consequently, researchers in this group focused their effort on developing sets of constitutive laws that allow simulation of practical two-phase processes.

Bresch et al. (2018) : Multi-Fluid Models Including Compressible Fluids

Stewart, H. (1979). Stability of two-phase flow calculation using two-fluid models. Journal of Computational Physics, 33(2):259–270.

Dinh, T. N., Nourgaliev, R. R., & Theofanous, T. G. (2003). Understanding of the III-posed two-fluid model. Proceedings of the tenth international topical meeting on nuclear reactor thermal hydraulics, (pp. 1CD-ROM). Korea, Republic of: KNS.

Bresch D., Desjardins B., Ghidaglia JM., Grenier E., Hillairet M. (2018) Multi-Fluid Models Including Compressible Fluids. In: Giga Y., Novotný A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham.

Index-matching experiments

- Particles: $d_p=2mm PMMA$; $\rho_p/\rho_f = 1.2$
- Fluid: Triton X-100
- Re ~ 1

(Aussillous et al., JFM 2013)

Analytical solution

- Einstein viscosity: $\nu_{e\!f\!f} = \nu^f (1 + 2.5\phi)$
- Coulomb friction: μ = constant \bullet
- Parabolic velocity profile

(Ouriemi et al., JFM 2009)

Granular stresses: particle-particle interactions

Dense granular flow rheology: $\mu(I)$ (GDR Midi, 2004)

Represent frictional-collisional interactions in dense granular flows

 $\overline{\overline{\tau^p}} = \mu(I)p^p \ \frac{\overline{S^p}}{||\overline{\overline{S^p}}||}$ **Shear stress** with $\overline{\overline{S^p}} = \nabla \overrightarrow{u^p} + \nabla \overrightarrow{u^p}^T - \frac{2}{3}tr(\nabla \cdot \overrightarrow{u^p})$

Visco-plastic rheology: contain a yield stress (need regularization) and a non-linear viscous term

Viscosity regularization (Chauchat and Médale, JCP 2014)

By definition:
$$\overline{\overline{\tau^p}} = \eta_p \ \overline{\overline{S^p}} \rightarrow \eta_p = \frac{\mu_s p^p}{||\overline{\overline{S^p}}||}$$
 $\eta_p = \eta_p \overline{\overline{S^p}}$

Control parameter = Inertial number: $I = \frac{||\overline{S^p}||d}{\sqrt{p^p/\rho^p}}$

$$= \frac{\mu(I)p^{p}}{\left(\left| \left| \overline{S^{p}} \right| \right|^{2} + \lambda^{2} \right)^{1/2}}$$

where λ is a small parameter

Plastic transition is approximated by a very viscous fluid rheology controlled by λ

Granular stresses: particle-particle interactions

Particle pressure:

$$p^p = p_e^p + p_s^p$$

2 contributions

Rate independent: \bullet

$$p_e^p = \Pi_0 \frac{\left(\phi - \phi_{rlp}\right)^2}{\left(\phi_m - \phi\right)^5}$$

pressure due to enduring contact (Johnson & Jackson, 1987)

Shear induced: \bullet

$$p_s^p = \left(\frac{b \phi}{\phi_m - \phi}\right)^2 \rho^p$$

Shear-induced pressure: lead to bed decompaction (Maurin et al., 2016)

- Comparison with analytical solution: Coulomb rheology + Einstein viscosity model
 - Numerical implementation of granular flow rheology is validated
- Numerical parameters: Δy=3 10⁻⁴ m

Sensitivity to regularization parameter

Simple:
$$\eta_p = \frac{\mu(I)p^p}{||\overline{\overline{S^p}}|| + r}$$

Chauchat and Médale (2010)

- Comparison with numerical solution: $\mu(I)$ rheology + Einstein viscosity model
 - Numerical implementation of granular flow rheology is validated
- Numerical parameters: Δy=3 10⁻⁴ m

3rd open question

The $\mu(I)$ rheology is ill-posed for certain parameter values and inertial numbers

Barker, T., Schaeffer, D. G., Bohorquez, P., and Gray, J. M. N. T. (2015). Well-posed and ill-posed behaviour of the mu(i) rheology for granular flow. Journal of Fluid Mechanics, 779:794–818

Use a modified kinetic theory of granular flows to account for friction

Perturbation analysis :

$$\begin{bmatrix} \hat{u}(x,t)\\ \hat{p}(x,t) \end{bmatrix} = \exp(i\boldsymbol{\xi}\cdot x + \lambda t) \begin{bmatrix} \tilde{u}\\ \tilde{p} \end{bmatrix}$$
$$\mu = \mu(I) = \mu_s + \frac{\Delta\mu}{I_0/I + 1}$$

2 options discussed in the literature:

Develop a compressible $\mu(I)$ rheology

- Heyman, J., Delannay, R., Tabuteau, H., & Valance, A. (2017). Compressibility regularizes the $\mu(I)$ -rheology for dense granular flows. Journal of Fluid Mechanics, 830, 553-568.

- Barker, T., Schaeffer, D. G., Shearer, M., and Gray, J. M. N. T. (2017). Well-posed continuum equations for granular flow with compressibility and mu(i) rheology. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2201):20160846.

- Schaeffer, D., Barker, T., Tsuji, D., Gremaud, P., Shearer, M., & Gray, J. (2019). Constitutive relations for compressible granular flow in the inertial regime. Journal of Fluid Mechanics, 874, 926-951. doi:10.1017/jfm.2019.476

- Chialvo, S. and Sundaresan, S. (2013). A modified kinetic theory for frictional granular flows in dense and dilute regimes. Physics of Fluids, 25(7):070603.

- Chassagne, R., Chauchat, J., and Bonamy, C. (submitted to PRF). A modified kinetic theory for frictional-collisional bedload transport valid from dense to dilute regime.

Turbulence-particle interactions

Balachandar (IJMF 2009)

• Stokes number: $St = \tau_p / \tau_\eta > 1$

- Particle response time: τ_p ; Kolmogorov time scale τ_η
- Inertial effects: particles do not respond instantaneously to all turbulent flow scales

• Particulate Reynolds number: $\Re_p = \frac{|u_r| d_p}{\nu^f} > \Re_p^c \approx 400$

 Vortex shedding in the wake of particles is generated = produce turbulence at the particle scale

Regimes:

- (II) Gravitational settling
- (III) Kolmogorov Interactions

(IV) Inertial range dissipation

(V) Inertial range production

Favre-averaged two-phase flow equations

• Ensemble averaging:
$$\langle \phi \rangle = \lim_{N \to \infty} \sum_{k=1}^{N} \phi_k$$
 Favre-averaged velocities $\overrightarrow{u^t} = \frac{\langle (1 - \phi) \overrightarrow{u^t} \rangle}{1 - \langle \phi \rangle}$ $\overrightarrow{u^p} = -$
• Favre-averaged two-phase flow equations:

$$\frac{\partial \langle c \rangle}{\partial t} + \nabla \left(\langle e \rangle \overline{\langle \overrightarrow{u} \rangle^f} \right) = 0$$

$$\rho^f \left[\frac{\partial \langle e \rangle \overline{\langle \overrightarrow{u} \rangle^f}}{\partial t} + \nabla \left(\langle c \rangle \overline{\langle \overrightarrow{u} \rangle^f} \otimes \overline{\langle \overrightarrow{u} \rangle^f} \right) \right] = -\rho^f \nabla \left(\langle c \rangle \Delta u^f \otimes \Delta u^f \right) + \nabla \sigma^f - \langle n \langle \overrightarrow{f^p} \rangle \rangle + \langle c \rangle \rho^f \overrightarrow{g}$$

$$\frac{\partial \langle \phi \rangle}{\partial t} + \nabla \left(\langle \phi \rangle \overline{\langle \overrightarrow{u} \rangle^p} \right) = 0$$

$$\rho^p \left[\frac{\partial \langle \phi \rangle \overline{\langle \overrightarrow{u} \rangle^p}}{\partial t} + \nabla \left(\langle \phi \rangle \overline{\langle \overrightarrow{u} \rangle^p} \otimes \overline{\langle \overrightarrow{u} \rangle^p} \right) \right] = -\rho^p \nabla \left(\langle \phi \rangle \Delta u^p \otimes \Delta u^p \right) + \nabla \sigma^p + \langle n \langle \overrightarrow{f^p} \rangle \rangle + \langle \phi \rangle \rho^p \overrightarrow{g}$$

$$\mathbf{Granular stresses}$$

$$\mu(0) \text{ or Kinetic theory of granular flows}$$

Ensemble averaging:
$$\langle \phi \rangle = \lim_{N \to \infty} \sum_{k=1}^{n} \phi_k$$
 Favre-averaged velocities $\overline{u'} = \frac{\langle (1 - \phi)u' \rangle}{1 - \langle \phi \rangle}$ $\overline{u''} = -$
Favre-averaged two-phase flow equations:

$$\frac{\partial \langle e \rangle}{\partial t} + \nabla \left(\langle e \rangle \langle \overline{u'} \rangle^f \right) = 0$$

$$\rho^f \left[\frac{\partial \langle e \rangle \langle \overline{u'} \rangle^f}{\partial t} + \nabla \left(\langle e \rangle \langle \overline{u'} \rangle^f \otimes \langle \overline{u'} \rangle^f \right) \right] = -\rho^f \nabla \left(\langle e \rangle \Delta u^f \otimes \Delta u^f \right) + \nabla \sigma^f - \langle n \langle \overline{f}^p \rangle \rangle + \langle e \rangle \rho^f \overline{g}$$

$$\frac{\partial \langle \phi \rangle}{\partial t} + \nabla \left(\langle \phi \rangle \langle \overline{u'} \rangle^p \otimes \langle \overline{u'} \rangle^p \right) = 0$$

$$\rho^p \left[\frac{\partial \langle \phi \rangle \langle \overline{u'} \rangle^p}{\partial t} + \nabla \left(\langle \phi \rangle \langle \overline{u'} \rangle^p \otimes \langle \overline{u'} \rangle^p \right) \right] = -\rho^p \nabla \left(\langle \phi \rangle \Delta u^p \otimes \Delta u^p \right) + \nabla \sigma^p + \langle n \langle \overline{f}^p \rangle \rangle + \langle \phi \rangle \rho^p \overline{g}$$
Granular stresses
$$u \oplus \sigma K \text{ findic theory of granular flows}$$

Fluid turbulence modeling

Reynolds shear stress: $\sigma_{ij}^{f\Delta} = -\rho^f \langle \epsilon \rangle \Delta u^f \otimes$

Large Eddy Simulation: Dynamic Smagorinsky

Subgrid stresses

$$\begin{split} \sigma_{ij}^{f\Delta} &= 2\rho^{f} \langle \epsilon \rangle \Delta^{2} || \overline{\overline{S^{f}}} || \left(C_{1}^{f} S_{ij}^{f} - C_{2}^{f} \frac{1}{3} S_{kk}^{f} \delta_{ij} \right) \\ \sigma_{ij}^{p\Delta} &= 2\rho^{p} \langle \phi \rangle \Delta^{2} || \overline{\overline{S^{p}}} || \left(C_{1}^{p} S_{ij}^{p} - C_{2}^{p} \frac{1}{3} S_{kk}^{p} \delta_{ij} \right) \end{split} \qquad \overline{\overline{S^{f}}} = \nabla \overline{u^{f}} + \nabla \overline{u^{f}}^{T} - \frac{2}{3} tr(\nabla . \overline{u^{f}}) \end{split}$$

$$\bigotimes \Delta u^f$$
 and $\sigma_{ij}^{p\Delta} = -\rho^p \langle \phi \rangle \Delta u^p \bigotimes \Delta u^p$

Coefficients C_n^k are computed using a dynamical procedure by assuming invariance of turbulent kinetic energy dissipation between the resolved and the sub grid scales
Sheet flow lab experiments (Revil-Baudard PhD, 2014)

- Tilting flume:
 - ► L = 10m ; W = 0.35m ; Slope = 0.5% ; Q = 30 L/s
- **PMMA** particles:
 - $d_p = 3 \text{ mm}$
 - ρ^p/ρ^f=1.19
 - $\mu_{\rm s} = 0.7$

Two-phase flow LES of sheet flow (Cheng PhD, 2016)

Kinetic Theory of Granular Flows

$$\nu^{t} = C_{s}^{f} \Delta^{2} \parallel \overline{S^{f}} \parallel \text{ where } C_{s}^{f} = \frac{\langle L_{ij}L_{i}^{d}}{\langle L_{ij}^{d}L_{i}^{d}}$$

$$\textbf{velocity model:} \quad \vec{u^{d}} = \widehat{\phi C_{D} \ \vec{u^{r}}} - \widehat{\phi C_{D} \ \vec{u^{r}}}$$

Conclusion on sediment transport modeling at the grain-scale

• Eulerian-Lagrangian modeling \Rightarrow granular rheology in bed-load transport

- \Rightarrow μ (I) rheology is accurate in the dense region (ϕ >0.3)
- \Rightarrow Frictional kinetic theory : works reasonably well over the full range of ϕ

- Eulerian-Eulerian modeling
 - $\rightarrow \mu(I)$ rheology successfully implemented using a regularization technique
 - Two-fluid LES: resolve turbulence-particle interactions
- Opens new perspectives for upscaling and application to complex flow configurations

Open question: Is it possible to derive a well-posed two-fluid model?

Open question: How to develop a well-posed granular rheology ? $\mu(I)$ or kinetic theory?

1. Coastal modeling at « large scale »

2. Sediment transport modeling at the grain scale : turbulent and granular processes

3. Upscaling of fine-scale processes at intermediate scales

Outline

Sand transport by waves: unsteady effects

Waves: Dohmen-Janssen et al. (2002) Current: Sumer *et al.* (1996)

Oscillating Water Tunnel - O'Donoghue & Wright (2004)

$$\frac{\delta_s^m}{d_p} = \alpha \ \theta \quad \text{with } \alpha = 10 - 13$$

Why?

Configuration

O'Donoghue & Wright (2004)

Sine wave:

-
$$T = 5 s$$

-
$$U_m^f = 1.5 \text{ m/s}$$

- Stokes layer thickness $\delta = 1.26 \times 10^{-3}$ m

Particles:

-
$$\rho^p = 2650 \ kg \ m^{-3} \ s$$

		Medium sand	Fine sand
	d p (µm)	280	150
	Vs (cm/s)	4	1.6
$\frac{\mathrm{d}}{\Delta^{+}} = \frac{\Delta}{\Delta}$	$\frac{\mathcal{U}_{*}}{\mathcal{V}^{f}}$		

Isocontours of concentration : $\overline{\phi} = 0.5$ (brown) and $\overline{\phi} = 0.08$ (silver)

Turbulent coherent structures : Q criterion

Behavior is different between medium and fine sand

Isocontours of concentration : $\overline{\phi} = 0.5$ (brown) and $\overline{\phi} = 0.08$ (silver)

Turbulent coherent structures : Q criterion

Flow reversal

- Medium sand deposited
- Fine sand still suspended
- Sheet-fow layer thickness not in phase with free stream velocity

Acceleration phase

- Flow instabilities are triggered -
- Stronger for medium sand

Flow peak

- Flow instabilities are well-developped
 - stronger for fine sand
- Sheet-flow layer thickness
 - in-phase for medium sand
 - phase-lag for fine sand

Deceleration phase

- Flow instabilities are welldevelopped
 - stronger for fine sand
- Sheet-flow layer thickness
 - in-phase for medium sand
 - phase-lag for fine sand

Density stratification

Richardson number:

 $Ri = \frac{g}{\rho^m} \frac{\partial \rho^m / \partial y}{(\partial u^f / \partial y)^2}$

Buoyancy dissipation / production of TKE

- Flow reversal
 - ► For medium sand:
 - Density stratification is strong enough to damp turbulence
 - ► For fine sand:
 - Density stratification overcome turbulence production
 - The flow is laminarized by the presence of the particles
- Flow peak
 - always unstable = no effect of particles on turbulence

Sediment fluxes

Reynolds-averaged sediment mass conservation

Turbulent flux = erosion

Settling flux = deposition

A. Mathieu PhD (2021)

Flow reversal

- Essentially stable for medium sand
- Stable for fine sand => strong turbulence reduction

Flow peak

always unstable = no effect on turbulence

All sediments are deposited

Medium sand

Acceleration

phase

- Acceleration phase:
 - Flow instabilities generates strong turbulence & erosion
- ► Flow peak:
 - Equilibrium between settling and erosion
- Deceleration phase:
 - Gravitational settling dominates
- Flow reversal:
 - Sediments have settled back to the bed

Stably stratified

Fine sand

- Acceleration phase:
 - Stably stratified flow: still deposition
 - Shear instabilities delayed
- ► Flow peak:
 - Still net erosion
- Deceleration phase:
 - Delayed settling phase
 - Density stratification => laminarization
 - Formation of concentration plateau
- Flow reversal:
 - Stably stratified flow
 - Reminiscent suspended sediments from previous half-wave cycle

A. Mathieu PhD (2021)

Acceleration

phase

Conclusion on upscaling of fine-scale processes

 Two-phase flow simulations allows to study complex sediment-flow interactions such as sediment transport under waves with a process-based approach

Physical explanation for the phase-lag or unsteady effect associated with fine sand

- Stratification => turbulence damping
- Reduced turbulent fluxes/erosion
- Non-linear sedimentation

Perspectives

- Characterize regime transitions
 - Controlling dimensionless numbers?
- Infer sediment transport parametrization
 - ➡ Upscaling

General conclusion & perspectives

Open question 1:

What are the stability conditions for the coupled system of equations wave-current-sediment?

Open question 2:

How to develop a well-posed granular rheology ? $\mu(I)$ or kinetic theory ?

Open question 3:

Is it possible to derive a well-posed two-fluid model?

18 months postdoc is available to work on a coastal morphodynamic at LEGI (MEPELS project - SHOM)

- develop a mid term (1 to 24 months) hierarchical model
- combine process-based models with reduced complexity approach potentially using AI...

Job opportunity

90

