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Introduction of the 3rd course on 
“Flood, inondation, and submersion”

● 25/11/2021, 14:00 – 16:00 : Benoît Camenen

Some issues in hydro-sedimentary modelling in rivers
● 25/11/2021, 16:30 - 18:30 : Julien Chauchat 

Mutli-scale approach for sediment transport in the 
nearshore

● 26/11/2021, 09:00 - 11:00 : Gaël Richard

Numerical issues in 2D/3D modelling

● My specific presentation made in collaboration with André 
Paquier & Jean-Baptiste Faure (INRAE, RiverLy)
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Use of numerical modelling in river 
engineering

● Hydraulics
○ Flood forecasting (active channels, urban flooding)
○ Low water modelling
○ River habitat, refuge area

● Sediment transport and morphodynamics
○ Pollution dynamics, fine sediment fluxes modelling
○ Prediction of erosion and deposition (at the reach scale 

or close to structures)
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Hydraulic modelling
● Based on the Barré-de-Saint-Venant (BSV) equations 

(shallow water equations) : at each time step, calculation 
of water level and velocity for :
○ each cross-section (1D model)
○ each element  (2D model)

● 1D equations :
○ Mass conservation :

○ Energy conservation 

∂ Sw
∂ t

+
∂(SwV )

∂ x
=0

∂V
∂ t

+
∂[VdV +gz ]

∂ x
+gJ f=0

with J f=
V 2

K2Rh
4 /3

Sw : wet section area
V : mean velocity

K : Strickler friction coefficient
Rh : hydraulic radius
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Why are we still using 1D modelling?
● Interest of 1D modelling

○ Possibility to test a large number of scenarios (Monte-
Carlo); Real time simulation; Long-term simulation 
(103 years)

○ Large domains (river network)
○ Possibility to couple the model with hydrological models

● Drawbacks of 1D modelling
○ Need of expertise (simplifications)
○ Need to build a quasi-2D solution from 1D variables
○ Difficulty to stock data results for long/multiple computa-

tions
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Hydraulic modelling, data needed
● Data to build a 1D model :

○ Network topology
○ Series of cross-sections describing the river bed  (until 

dikes) and describe the longitudinal profile (              for 
low flow modelling) 

○ Characterisation of structures (weir, dam, …)
○ Possibly, a description of the bed roughness at different 

stages 

Δ x≈W
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● Data to build a 1D model :

PamHyr platform for 1D 
modelling (RubarBE, 
Mage, INRAE Lyon)

Hydraulic modelling, data needed
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● Data to build a 2D model :
○ Set of bathymetric data points to describe the whole river 

bed including main bed forms (and structures); calculation 
time increase linearly with the number of nodes n!        
(increase with n1.5 to keep the Courant-Friedrich-Levy CFL 
conditions)

○ Characterisation of complex structures (dam, …)
○ Possibly, a description of spatial distribution of the bed 

roughness 

Hydraulic modelling, data needed
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● Data to build a 2D model :
Triangular mesh for finite 
volumes or finite elements 
(Telemac, EDF-LNHE)

Quad mesh for finite volumes 
(Rubar20, INRAE Lyon) 

 Rhône-Isère confluence (G. Naudet ) Lône du Beurre (Artelia)

Hydraulic modelling, data needed
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● Need a different model for high-flow and low-flow modelling:
○ Reach length
○ Energy loss due to

topography

Issues in 1D hydraulics modelling
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● Hydraulic structures:
○ BSV equations not valid for strong gradients (slope, river 

width)
○ Hydraulic laws require coefficients to be calibrated
○ Sensitivity to the water depth (submerged structure)
○ Possible numerical instabilities

→ use of the Preissmann slot 

for pressurized flows

Malekpour & Karney 
(JHE, 2016)

Issues in 1D hydraulics modelling
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● Dry sections:

→ use of the Preissmann slot 

Issues in 1D hydraulics modelling
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● Additional processes due to compound channels

Flow modelling in compound channels

Bed friction
Momentum exchange by turbulence transfer
Momentum exchange by mass transfer

Yassine Kaddi 
(PhD 2021)
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● Divided Method Channel (Lotter, 1933)
○ Friction loss modelled for each subsection using Manning-

Strickler

● Debord method (Nicollet & Uan, 1979)
○ Correction taking into account turbulence transfer 

● Exchange Discharge Model (Bousmar and Zech, 1999)
○ Explicit modelling of turbulence and mass transfer 

Flow modelling in compound channels

J f=
V mc

2

Kmc
2 Rh ,mc

4 /3 =
V fp

2

K fp
2 Rh , fp

4 /3
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● Independent Subsection Method, 1D+ (Proust et al., 2010)
○ Resolution of the momentum equation for each subsection

Flow modelling in compound channels

(1−
Umc

2

ghmc )∂hmc
∂ t

=J 0−J f ,mc+
V mc

2

gBmc

∂Bmc

∂ x
−

τ fmhfp
ρg Sw ,mc

+
qfm(2V fp−V fm)

g Sw ,mc

(1−
U fp

2

ghfp)∂h fp
∂ t

=J 0−J f , fp+
V fp

2

gB fp

∂B fp

∂ x
+

τfmh fp
ρ g Sw, fp

+
q fm(2V fp−V fm)

g Sw , fp

Bed friction
Momentum exchange by turbulence transfer
Momentum exchange by mass transfer

qfm : mass transfer at the interface
τfm : shear stress at the interface
Vfm : longitudinal velocity at the 
interface
→ closure equations
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● Test of an unsteady flow over compound channels 

Flow modelling in compound channels

Yassine Kaddi 
(PhD 2021)
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● Test of an unsteady flow over compound channels 

Flow modelling in compound channels

Yassine Kaddi 
(PhD 2021)

MC → FP

FP → MC

x=6m
x=10m

x=0m
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● Issue of confluences

→ what flow repartition? 

Flow modelling in compound channels

Yassine Kaddi 
(PhD 2021)
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● Hydraulic structures:
○ Same issues as for 1D modelling

→ same methodologies as for 1D modelling but more 
complex to adapt since it needs a finer discretization

Issues in 2D hydraulics modelling
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Dry cells:
○ Detection and correction of the free surface gradient and 

smoothing of negative water depths 

○ Adding a porosity term to the half-dry cells
○ Removing from the calculation all the elements that are 

not entirely wet (no clear criteria)

Issues in 2D hydraulics modelling
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● Urban flooding: important issue in the climate change con-
text (increasing hazard)

● How to represent different obstacles of varying size?
○ Individual houses or blocks (openings)
○ Street furniture (pavement, street light, etc.), vehicles
○ Underground spaces such as the subway
○ Drainage system

Flow modelling in urban zones
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● Example of urban blocks at different scale
○ At large scale, can be roughly modelled as a roughness 

using a Strickler coefficient 

Flow modelling in urban zones

Pierre-Henri Bazin 
(PhD 2013)

Oullins (near Lyon, France)
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● Example of urban blocks at different scale
○ At a smaller scale, need to define structure laws for sub-

merged walls (low), (semi)-pervious boundaries (per, bar) 
or solid boundary (Imp) → increasing complexity!

Flow modelling in urban zones

Pierre-Henri Bazin 
(PhD 2013)

Oullins  (near Lyon, France), 
zoom on a cross-road
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● Example of urban blocks at different scale
○ Run 1: walls, including all buildings and boundaries
○ Run 2: buildings, including buildings but with pervious boundaries only
○ Run 3: free, without building and wall 
○ Run 4: streets, excluding building areas

Flow modelling in urban zones

Pierre-Henri Bazin 
(PhD 2013)Oullins  (near Lyon, France)
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● Often used for large simulation since 1D modelling is more 
efficient

● Coupling of 1D modelling (duct network, main channel) with 
2D modelling (surface flow, overflow, reservoirs, etc.)

● Main issues
○ Numerical instabilities
○ Location of the interface between models?
○ Need to build a quasi-2D solution from 1D variables in a 

transition zone if flow from 1D model to several cells of 2D 
model (Mezbache et al., 2020) 

1D/2D coupling
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● Exchange discharge

○ 2D mass conservation:

○ 1D mass conservation:

1D/2D coupling

∂Sw
∂ t

+ ∂Q
∂ x

=qex ,1D=
qex

Δ x1D

∂h
∂ t

+
∂(hu)
∂ x

+
∂(hu)
∂ y

=−qex ,2D=
qex

Δ x2D

Bazin et al. (JHE 2014)

ΔH 15=(K12α12
2 +K 23+ f 34

L34

D34

+K 45) qex
2

2 gA34
2

Many coefficients to evaluate 
Different for drainage or over 
flow cases
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● Bedload:  larger sediment which is transported by saltation, 
rolling, and dragging on the riverbed

● Suspended load : fine sediment which is transported by the 
flow in the water column with a velocity close to the flow 
velocity and kept suspended by the fluid turbulence 

Plummer, 
McGeary, & 
Carlson (2009)

What is sediment transport ?
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● Sediment transport capacity Cs: quantity of sediment a uni-
form steady flow can transport
○ Coarse sediments (sands, gravels): there exist semi-em-

pirical formulas to evaluate Cs

○ Fine sediments (clay, silt):
● Sediment transport Qs: quantity of sediment a flow can in-

deed transport including spatial (non-uniform) and temporal 
(unsteady) effects
○ Coarse sediments:
○ Fine sediments: 

Sediment transport modelling

C s≈∞

Qs≈C s=f (θ , h/d ,d* , s ,Fr , etc ...)
Qs=Q s , up+E−D
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● Mass conservation equations (1D)
○ Exner equation (coarse sediments)

○ Advection-dispersion equation (fine sediments) 

Sediment transport modelling

(1−p)
∂S s
∂ t

+
∂Qs

∂ x
=0

∂(SwC )
∂ t

+
∂(QC)

∂ x
− ∂

∂ x (D f Sw
∂C
∂ x )=(E−D)W+qLatC Lat

p : bed porosity
Ss : bed section

C : sediment concentration
Df : dispersion coefficient
W: river width

E : erosion flux
D : deposition flux

(1−p)
∂ S s
∂ t

=(E−D)W



p. 30IMPT, Morphological impact of climate change, 23-26 novembre 2021, Lyon 

● Distance La for which sediment transport Qs reaches its 
transport capacity Cs

● L
a
 ~ average distance of a particle jump

○ Bedload: function of the grain size
○ Suspended load : function of the Rouse parameter

● Attention!  In practical use (numerical modelling), term adding dif-
fusion that stabilize calculations.  La function of the mesh size

Adaptation length

∂Qs

∂ x
=

(C s−Qs)
La

Daubert & Lebreton (1967)

PR=
W s

κu*
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● Importance of diffusion to avoid chock → physical?!
○ Adaptation length
○ Slope effect

Need of diffusion...

qs
*=q s(1−β

∂ zb
∂ s )

Dune front
Avalanche transport: 
qs = f(slope,qs,up)

Local slope
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● Most models assumed a single grain size
● Two schools for taking into account a sediment mixture with a 

poorly sorted grain size distribution (GSD)
○ Description of the GSD in multi-classes ; 

calculation of sediment transport for each class taking into 
account their content and potential interactions between 
classes (masquage, surexposition)

○ Description of the GSD using 2 parameters: D50 et σ

hypothesis of a log-normale distribution ; need of semi-em-
pirical laws for the evolution of D50 et σ

Representation of a sediment mixture
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● Most complex part of a morphodynamic model
○ Need to deal with a sediment time step that is different from 

the hydraulic time step, possible input or output of sedi-
ments (or a mixture of sediments), different sediment layers 
etc. for each cell and each time step.

○ Introduction of the active layer concept to link transport lay-
ers to bed layers (Hirano, 1971)

Bed evolution module
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● Example of a downstream fining experiment (Camenen et al., 
2017) using the RubarBe code (INRAE RiverLy, A. Paquier)  

Bed level and grain size evolutions 

No big issue for the 
bed level evolution

Δ x=1  m

La=2  m
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● Example of a downstream fining experiment (Camenen et al., 
2017) using the RubarBe code (INRAE RiverLy, A. Paquier)

● GSD evolution: 
○ Mixing process

○ Sharing process

Bed level and grain size evolutions 

d50=d50a
Ma /(Ma+Mb)d50a

Mb /(Ma+Mb)

d50 f /c=d50 exp[−/+ Δ x
Ld

σ−1
σ

M−M f /c

M ]
Ld and Lσ proportional to the 
equilibrium reach length

Correct behaviour but mass 
conservation for each class 
not necessarily conserved
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Limits of the Hirano concept
● A system of bed layers physical? Active layer thickness?
● Issue for vertical sediment fluxes with no net aggradation or 

degradation (infiltration, sorting)
● Fail to describe vertical sorting fluxes through bed form mi-

gration

Blom & Parker (JGR 2004)
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Limits of the Hirano concept
● Equilibrium sorting model (Blom & Parker, JGR 2004)

○ Framework for sediment continuity (Parker et al., JHE 2000) 
with introduction of a probability density function (PDF) of 
bed surface elevations, pe:

♦ Fi: volume fraction content of size fraction i at elevation z
♦

○ Einstein step length formulation + lee sorting function + ac-
count for the variability in bed form trough elevation

→ computation of the vertical sorting profile in case of dunes
○ Issues in predicting probability distribution of bed elevation 

and elevation-specific densities for erosion and deposition

(1−p)Ps

∂F i

∂ t
+(1−p)F i

∂ Ps

∂ t
+(1−p)F i pe

∂η
∂ t

=Di−Ei

Ps=1−∫−∞

z
pedz
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Limits of 1D modelling
● Based on section-averaged values 

○ Water depths and bed shear stress do vary throughout the 
river section and sediment transport is highly non-linear

○ Bed evolution non-uniform over a river cross-section
●  No description of 2D and 3D phenomena

○ Main channel from left to right side of the river → trans-
verse flows liked to transverse channel or transverse 
slopes)

○ Effects of a 3D flow (curve) on sediment transport
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Toward a 1D1/2 modelling
● Distribution of bed shear stress throughout a river section 

(± proportional to the water depth) 
● Example of the Danube River in  Slovakia (Camenen et 

al., 2011)
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Toward a 1D1/2 modelling
● Distribution of erosion/deposition volumes throughout the 

river cross-section
○ Function of the bed shear stress (water depth)
○ Different distribution depending on erosion/deposition? 

→ more realistic but less stable
○ Modelling strategy depending on the river, difficult to val-

idate!

erosion

deposition
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Application of 1D modelling for 
sediment budget

● Sediment budget on several reaches of the Loire River at 
Belleville, comparison simplified sediment budgets and 1D 
modelling (Camenen et al., 2015)

● Importance of unsteadiness and diffusion

Sed. budget 1D model
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Modelling of the fine sediment 
dynamics

● Advection-Dispersion equation

● Implicitly assumed that concentration is homogeneous over 
the vertical (2D) or the cross-section (1D)
○ OK for fine sediments
○ Wrong for sand

● In case of a 1D (or 2D) model, a concept of mean concen-
tration (over vertical or over the river section) can be used 
→ equilibrium with hydraulic forces

∂(SwC )
∂ t

+
∂(QC)

∂ x
− ∂

∂ x (D f Sw
∂C
∂ x )=(E−D)W+qLatC Lat

Advection Dispersion Source terms
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Modelling of the fine sediment 
dynamics

● Importance of the description of the GSD
○ GSD poorly sorted for fine sediments
○ Vertical equilibrium and bed exchanges very sensitive to 

the settling velocity, so to the grain size
○ Estimation of main modes of a suspension using data 

from a laser diffraction siever (Guertault, PhD 2015)
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Longitudinal dispersion
●  Many semi-empirical formula-

tions:

● Correct results obtained for 
Meribel-Jonage with the  
Iwasa & Aya (1991) formula 
(Launay et al. 2014) :

D f=a(Uu*
)
b

(WH )
c

a=2  ; b=0  ; c=1.5
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Longitudinal dispersion
●  Example of Miribel-Jonage to evaluate the impact of the 

choice of the longitudinal dispersion formula  (Launay et 
al., 2014) (injection of Rhodamine WT in 2011) 

Simulation with Mage- AdisTS 
(INRAE RiverLy, J.-B. Faure)
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Rhône model

Observatoire des 
Sédiments du 
Rhône (OSR)

Mage-AdisTS

1D modelling of the Rhône River
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● Regulation of hydro-electric dams (hydraulic laws)
● Additional regulation

□ Discharge regulation du débit entre le between Old-
Rhône (compensation water) and headrace (max 
turbinated water) 

□ Water level to maintain in the reservoir (navigation)
●Exemple de Pierre-Bénite (Dugué et al., 2008)

1D modelling of the Rhône River
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● Possibility to  
quantify each 
tributary input of 
water at Beaucaire

Application of 
Mage-AdisTS 
on the Rhône 
River
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● Suspended Sediment Matter (SSM) flux on the Rhône 
River at Beaucaire following 2008 floods of the Isère and 
Durance River (Launay et al., Stoten 2019)

Application ofMage-AdisTS on the 
Rhône River



p. 50IMPT, Morphological impact of climate change, 23-26 novembre 2021, Lyon 

Source terms
● Erosion (Partheniades, 1965)

□ M: [kg/m²/s] erosion coefficient, τ : bed shear stress [N/m2], and 
τcr : critical bed shear stress  (may vary with time for cohesive 
sediments → consolidation)

●Deposition (Krone, 1962)

□ Debate on the existence of a critical be shear stress for 
sedimentation (settling flux whatever the bed shears stress)

□ In case of a 3D model, use of a concentration close to the bed  

E=M ( τ
τcr−1)

D=CW s(1− τ
τcr , sed ) τcr , sed=∞?
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Source terms (AdisTS)
● Combination of the erosion (Partheniades, 1965) and 
deposition (Krone, 1962) source terms

●apd =1  (settling flux not disturbed)
●C0 function of the grain size from 1 (clay) to 0.2 (sand)
(Guertault et al., JHE 2016)
● Bed shear stress estimated from a 1D model (evaluation 
in the main channel and in the active flood plain)

E−D=a pdW s (C eq−C )

Ceq=C0( τ
τcr −1)

(1−p)
∂Ss
∂ t

=(E−D)W
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● Flushing of Verbois and Chancy-Pougny dams
● Companion operation for Génissiat and Seyssel dam

Flushing operation in the Haut-Rhône
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Downstream 
reservoir
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Fluvial 
reach

● Génissiat dam reservoir:
□ 14 millions m³ 

deposits (25%  
volume)

□ Augmentation of 
deposit thickness 
downstream

□ Downstream fining 
of the grain size

(Guertault et al., ESPL 
2017)
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Application of AdisTS on Génissiat dam 
reservoir

● Module for concentration repartition in different works

Surface spillway

Mid-depth sluice gate

Bottom sluice gate
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Application of AdisTS on Génissiat dam 
reservoir

● Estimation of morphological evolution in the dam reservoir e 
(1984 flush operation)
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Application of RubarBE on Génissiat 
dam reservoir

● Estimation of morphological evolution in the dam reservoir e 
(1984 flush operation) using sediment transport capacity

Fines not taken 
into account

Large sand 
erosion 
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Problems due to sediment mixture
● Modelling of coarse sediments (bedload) together with fine 
sediments (suspended load)

→ coupling of the Exner equation and advection-dispersion 
equation for each class of sediment i:

● Fine sediment impacts
□ Consolidation effects (soil mechanics)
□ Varying porosity of the bed (compaction, infiltration)
□ How to deal with sediment layers?

(1−p)
∂Ss
∂ t

+∑i

∂Qsi

∂ x
=∑i

(Ei−Di)W
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2D morphodynamic modelling
● Main issues 

□ Slope effects on bedload transport
● Correction of the magnitude
● Correction of of the direction

→ creation of macro-bedform (alternate bars)

qs
*=q s(1−β

∂ zb
∂ s )

Jiaze Li (PhD, 2019-2022)
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2D morphodynamic modelling
● Main issues 

□ Slope effects on bedload transport
□ Roughness

● Bed roughness + drag roughness (vegetation)
● Spatially distribution
● Temporal distribution (bedforms, vegetation)

→ significant impact on the distribution of the flow and 
so on the morphodynamics
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2D morphodynamic modelling
● Main issues 

□ Slope effects on bedload transport
□ Roughness
□ Turbulence model

● « classical » models generally used

→ K-epsilon model
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2D morphodynamic modelling
● Main issues 

□ Slope effects on bedload transport
□ Roughness
□ Turbulence model
□ Sediment transport formulation (multi-class)
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2D morphodynamic modelling, impact 
of vegetation

Jiaze Li (PhD, 
2019-2022)
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2D morphodynamic modelling, impact 
of vegetation

Jiaze Li (PhD, 2019-2022)

● Impact of the vegetation growth



p. 64IMPT, Morphological impact of climate change, 23-26 novembre 2021, Lyon 

2D morphodynamic modelling, impact 
of vegetation

Jiaze Li (PhD, 2019-2022)

● Impact of the vegetation growth
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Conclusion and perspectives
● Classic approaches (1D, 2D) commonly used for engineering 
issues with robust results for both hydraulics and bed evolution
● Strong interest in computation efficiency to do long term 
modelling of large domains (prospective calculations with an 
estimation of uncertainties)
● How to manage large data set (input, output)?
● Needs in coupling different models (hydrology, hydraulics, 
geotechnics, ecology, etc.)
● For morphodynamical modelling, sediment mixture remains 
an issue (varying porosity, sediment layers, etc.) as well as 
vegetation
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27/01/2020 / Réunion de projet / Junjian DENG

Thanks for your attention !
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