IMPT 2021, 23-26 November 2021 Impacts morphologiques du changement climatique

Ice, glacier and ice-sheet flow

Olivier Gagliardini

Tipping Points in Antarctic Climate Components

Ice, glacier and ice-sheet flow

- Introduction: Cryosphere and climate change
- Part 1: Ice(s), a material with a complex rheology
- Part 2: Glaciers, basal sliding and risks
- Part 3: Ice-sheets, grounding line and sea-level

Who I am?

- 1993: ENS Cachan *Agrégation* in Civil Engineering
- 1995-99: PhD on ice anisotropy at LGGE
- 1999: *Maître de conferences* UJF & LGGE
- 2010-2015 : Institut Universitaire de France
- 2012: *Professeur* University Grenoble Alpes

Modelling of complex ice flows

Interested in the **processes** that control glacier and ice-sheet dynamics

Who I am not?

- I am not a mathematician
- I am not even a numerical specialist

Institut des Géosciences de l'Environnement (IGE)

Who has contributed?

• **Colleagues** at IGE: Fabien Gillet-Chaulet, Gael Durand, Christian Vincent, Florent Gimbert,...

PhD students

Fabien Gillet-Chaulet (CR, CNRS) 2003-2006 Basile de Fleurian (postdoc Norway) 2007-2010 Cyrille Mosbeux (postdoc IGE) 2013-2016 Julien Brondex (postdoc CEN) 2014-2017 Olivier Passalacqua (IGN) 2014-2017 Juan Pedro Roldan Blasco (ANR SAUSSURE) 2019-Benoit Urruty (H2020 TiPACCs) 2019-

Post-docs

Adrien Gilbert 2020-Lionel Favier 2009-2012 ; 2018 Ma Ying 2009-2010 Gael Durand (DR CNRS) 2007-2009

Contributor of the developments of the open source finite element code **Elmer/Ice**

A code dedicated to solve ice, glaciers and ice-sheet flow

Elmer/Ice is an add-on package to Elmer, a multi-physics FEM suite mainly developed by CSC-IT Center for Science Ltd. (Finland)

"Father" of the Elmer/Ice code

Animation of the community: more than 17 courses since 2018

164 publications using Elmer/Ice since 2004

http://elmerice.elmerfem.org

The cryosphere in a warming climate

History of IPCC statements

AR1 (1990): "The size of this warming is broadly consistent with predictions of climate models, but it is also of the same magnitude as natural climate variability."

AR2 (1995): "The balance of evidence suggests a discernible human influence on global climate."

AR3 (2001): "There is new and stronger evidence that most of the warming observed over the last 50 years is attributable to human activities."

AR4 (2007): "Anthropogenic warming of the climate system is widespread and can be detected in temperature observations taken at the surface, in the free atmosphere and in the oceans. Evidence of the effect of external influences, both anthropogenic and natural, on the climate system has continued to accumulate since the TAR."

AR5 (2013): "It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century."

AR6 (2020): "It is unequivocal that human influence has warmed the atmosphere, ocean and land. Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred."

IPCC Sixth Assessment report: it's not yet over

1477

1497

ipcc The Ocean and Cryosphere in a Changing Climate

This Summary for Policymakers was formally approved at the Second Joint Session of Working Groups I and II of the IPCC and accepted by the 51th Session of the IPCC, Principality of Monaco, 24th September 2019

Summary for Policymakers

Cryosphere on Earth

Portions of Earth's surface where water is in solid form

Includes: sea ice, lake ice, river ice, snow cover, glaciers, ice caps, ice sheets, and frozen ground (incl. permafrost)

Plays a significant role in the global climate

Response times vary from days to milleniums

Areas and Volumes

Ice on Land	Percent of Global Land Surface ^a	Sea Level Equivalent ^b (metres)
Antarctic ice sheet ^c	8.3	58.3
Greenland ice sheet ^d	1.2	7.36
Glacierse	0.5	0.41
Terrestrial permafrost ^r	9–12	0.02-0.10 ⁹
Seasonally frozen ground ^h	33	Not applicable
Seasonal snow cover (seasonally variable)	1.3–30.6	0.001-0.01
Northern Hemisphere freshwater (lake and river) icei	1.1	Not applicable
Total ^k	52.0-55.0%	~66.1
Ice in the Ocean	Percent of Global Ocean Area ^a	Volume ¹ (10 ³ km ³)
Antarctic ice shelves	0.45 ^m	~380
Antarctic sea ice, austral summer (spring) ⁿ	0.8 (5.2)	3.4 (11.1)
Arctic sea ice, boreal autumn (winter/spring) ⁿ	1.7 (3.9)	13.0 (16.5)
Sub-sea permafrost ^o	~0.8	Not available
Total ^p	5.3-7.3	

1 mm SLE ~ 360 Gt of ice

Ocean and Cryosphere key components

04_SROCC_TS_FINAL

Ocean and cryosphere past and future changes

Glaciers and Ice caps: repartition of Earth

TW = tidewater glaciers

Glaciers and Ice caps: definitions

Glaciers:

- · Small land-based ice masses in mountainous regions
- Constrained by topographical features
- Are found on every continent
- Many different types: Valley glaciers, cirque glaciers, hanging glaciers, tidewater glaciers
- Important fresh water resource for millions of people

Ice caps and Icefields:

- Ice masses that cover less than 50,000 km² of land area
- · Icefields are constrained by topographical features
- Ice caps override the underlying topography

Vatnajökull, Iceland

Southern Patagonian Ice Field

Glaciers length

Worldwide retreat since the mid 19th century

Increased mass loss during the last decades

Ice sheets

Ice masses that cover more than 50,000 km² of land area

Currently 2 ice sheets on Earth: Greenland and Antarctica

Glossary:

Ice shelf: A floating slab of ice of considerable thickness extending from the coast often filling embayments in the coastline of an ice sheet

Marine-based ice sheet: An ice sheet containing a substantial region that rests on a bed lying below sea level and whose perimeter is in contact with the ocean.

Ice core and climate archives

Increasing mass loss contributing to sea level rise

Snow accumulates during winter...

and melt partially during summer...

Glacier movements redistribute ice from top to bottom

Part 1

Glacier motion = internal deformation + basal sliding

Part 2

Glacier motion = internal deformation + sliding

Non-linear viscous flow

Glace = Fluide visqueux

https://www.geo.uzh.ch/~gjouvet/

Basal sliding of ice over the bedrock

http://www.moreauluc.com

When ice meets water... other processes to loose/gain mass

+ other eventual internal variables (density, fabric, damage,...)

Input

Output

Temperature: complexity of boundary conditions

Ice flow: complexity of boundary conditions

And most boundaries are evolving surfaces (GL, front)

Which equations? Which boundary conditions?

